
Article

STATISTICAL INFERENCE ON THE CANADIAN
MIDDLE CLASS

Russell Davidson 1,2

1 Department of Economics and CIREQ, McGill University, Montréal, Québec, Canada H3A 2T7;
russell.davidson@mcgill.ca

2 AMSE-GREQAM, 5 boulevard Maurice Bourdet, CS 50498, 13205 Marseille cedex 01, France;
russell.davidson@mcgill.ca

Academic Editor: name
Version March 2, 2018 submitted to Econometrics

Abstract: Conventional wisdom says that the middle classes in many developed countries have1

recently suffered losses, both in terms of the share of the total population belonging to the middle2

class, and also their share in total income. Here distribution-free methods are developed for3

inference on these shares, by means of deriving expressions for the asymptotic variances of sample4

estimates of them, and the covariance of the estimates. Asymptotic inference can be undertaken5

on the basis of asymptotic normality. Bootstrap inference can be expected to be more reliable, and6

appropriate bootstrap procedures are proposed. As an illustration, samples of individual earnings7

drawn from Canadian census data are used to test various hypotheses about the middle-class shares,8

and confidence intervals for them are computed. It is found that, for the earlier censuses, sample9

sizes are large enough for asymptotic and bootstrap inference to be almost identical, but that, in10

the twenty-first century, the bootstrap fails on account of a strange phenomenon whereby many11

presumably different incomes in the data are rounded to one and the same value. Another difference12

between the centuries is the appearance of heavy right-hand tails in the income distributions of both13

men and women.14
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1. Introduction17

There has been much discussion in many countries about the fate of the middle class, variously18

defined. It appears clearly that middle classes in different developed countries have had rather19

different experiences; in particular the case of the USA, about which a lot has been written, for20

instance, Heathcote, Perri, and Violante (2010) is in no way typical or representative. Canada21

shares a long border with the USA, and has a culture more similar to the American one than any22

other country, but it maintains a separate identity, and differs from the US markedly on matters23

of social security and of immigration. Nevertheless, a couple of decades ago, it was pointed24

out by Foster and Wolfson (2010) that, in both countries, a decline of the middle class had led25

to a polarisation of the income distribution. In Canada specifically, the situation is reviewed26

by Brzozowski, Gervais, Klein, and Suzuki (2010), for inequality not only of income, but also of27

wealth and consumption. For the USA, an early article by Wolfson (1994) discusses polarisation,28

while Wolff (2013) describes the fate of the wealth of the middle class following the crisis of29

2008. Some recent trends in income inequality in different European regions have been analysed30

by Castells-Quintana, Ramos, and Royuela (2015).31
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The study of income inequality, and its effects on growth, social stability, and many other32

features of society, started more than half a century ago, with Kuznets (1955). A landmark33

contribution to the measurement of income inequality was Atkinson (1970). A useful article is34

Cowell (1999), which appears in the Handbook of Income Inequality Measurement, which contains35

many chapters on different aspects of the topic, some purely theoretical, like the seminal contributions36

of Blackorby, Bossert, and Donaldson (1999). An interesting recent paper, Ryu (2013), develops a sort37

of inverted Gini index that emphasises the distribution of the poor, and describes ways of estimating38

income distributions based on the principle of maximum entropy.39

The Canadian Liberal federal government elected in late 2015 has made a point of trying to40

improve the lot of the Canadian middle class, claiming, no doubt with some justice, that the share of41

the middle class, however defined, has declined over the last several decades, both in terms of the42

share of the population belonging to the middle class, and also its share in total national income.43

Beach (2016), in his presidential address to the Canadian Economics Association, drew a44

wide-ranging portrait of the evolution of Canadian middle-class fortunes since the 1970s. His analysis45

tries to understand the different mechanisms that have shaped the economic environment in which46

this evolution has taken place. He provides abundant statistical information on earnings in Canada,47

duly separating the two sexes in his analysis, given that their position in the labour market has48

changed very considerably in the last fifty years.49

The aim of this paper is to bring some formal statistical analysis to bear on the Canadian50

census data. The work of Davidson and Duclos1 found in Davidson and Duclos (1997) and51

Davidson and Duclos (2000) introduced a set of statistical procedures that permit distribution-free52

inference on income data, many of which can be used directly for the analysis in this paper. Some53

extensions of their methodology are developed here to deal with the specific problems addressed.54

Formal analysis requires a formal definition of the middle class. An ideal definition would55

have to be based on all sorts of socioeconomic characteristics of individuals and households, but56

such a thing is well outside the scope of this paper. Instead, we consider definitions based solely57

on household income. Usually different segments of the income distribution are defined by use of58

quantiles, and income data are sometimes grouped by deciles or vigintiles. Thus a possible definition59

of the middle class could be those households whose incomes lie between the second decile and the60

eighth. Another approach would be to define the upper and lower bounds of middle-class incomes61

as multiples of the mean or median income. However, given the stylised fact that the recent changes62

in income inequality in most developed countries have favoured the rich and the super-rich, use of63

the mean as a criterion for defining income classes is likely to distort inference. It is easy to see that a64

substantial increase in the income of the upper 10% of the distribution, with no changes for the lower65

90%, leads to an increase in mean income and no change in the median. Similarly, quantile-based66

definitions of the middle class are unaffected by an increase in the income of the rich and only the67

rich.68

If the middle class is defined as the set of households with incomes between a the p lo quantile69

of the income distribution and the p hi quantile, where a possible choice might be p lo = 0.2 and70

p hi = 0.8, it is not possible to measure changes in the population share of the middle class, because71

this share is always just p hi − p lo. It remains possible to measure changes in the income share.72

In the next section, distribution-free plug-in estimators are presented for the population and73

income shares of the middle class, according to three different sorts of definition of the middle class74

– based on the median income, based on the mean income, and based on quantiles of the income75

distribution. These estimators are shown to be consistent and asymptotically normal, and feasible76

estimators are given for the asymptotic variance. Then, in Section 3, the evolution over time of the77

1 Currently (December 2017) Minister of Families, Children and Social Development in the Canadian federal government.
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middle-class shares in Canada is analysed using census data from the 1971 census to that in 2006.78

Section 4 concludes.79

2. Asymptotic Analysis80

We begin with a definition of the middle class as the section of the population with incomes81

between a fraction a of median income and a multiple b of it. Typically, we might have a = 0.5,82

b = 1.5. It is desired to estimate the size of this section of the population, and also to estimate its83

share in total income. Other definitions will be considered later.84

2.1. Definition in terms of the median85

Let m denote median income. Then the proportion of the population considered to be middle86

class is F(bm) − F(am), where F is the cumulative distribution function (CDF) of income in the87

population. In order to estimate this quantity on the basis of a random sample of size N, it is necessary88

to have an estimate of F, F̂ say, from which an estimate of m may be deduced, or else obtained directly89

using order statistics, by use of the formula90

m̂ =

{
y(n+1) if N = 2n + 1 (N odd)

(y(n) + y(n+1))/2 if N = 2n (N even)

The natural choice for F̂ is the empirical distribution function (EDF):91

F̂(y) =
1
N

N

∑
i=1

I(yi ≤ y), (1)

where the yi are the incomes observed in the sample, and I is the indicator function, equal to 192

is its argument is true, to 0 otherwise. If PS denotes the share of the middle class in the whole93

population, then it can be estimated by94

P̂S = F̂(bm̂)− F̂(am̂) (2)

The income share, IS say, that accrues to the middle class is by definition given by95

∫ bm

am
y dF(y)

divided by the mean income, denoted by µ, and equal to
∫ ∞

0 y dF(y). The plug-in estimator of µ96

is97

µ̂ =
∫ ∞

0
y dF̂(y) =

1
N

N

∑
i=1

yi.

Consequently, a suitable estimate of IS is98

ÎS ≡ 1
µ̂

∫ bm̂

am̂
y dF̂(y). (3)

For asymptotic statistical inference, we need estimates of the asymptotic covariance matrix of99

(P̂S, ÎS). Consider first the asymptotic variance of P̂S, which is by definition the variance of the limit100

in distribution as N → ∞ of N1/2(P̂S − PS). We have101

P̂S − PS = F̂(bm̂)− F(bm)−
(

F̂(am̂)− F(am)
)
. (4)

Now102
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F̂(bm̂)− F(bm) =
∫ bm

0
d(F̂ − F)(y) +

∫ bm̂

bm
dF(y) +

∫ bm̂

bm
d(F̂ − F)(y).

The first two terms on the right-hand side are of order N−1/2 if, as we can reasonably assume,103

things are regular enough for both (F̂ − F)(y) and m̂ − m to be of that order. The last term, on the104

other hand, is of order N−1, and so can be dropped for the purposes of asymptotic analysis. The first105

term is106

1
N

N

∑
i=1

[
I(yi ≤ bm)− F(bm)

]
, (5)

and the second is107

b f (bm)(m̂ − m) + O(N−1), (6)

where f = F′ is the density function. By the Bahadur (1966) almost-sure representation of108

quantiles, we have109

m̂ − m = − 1
N f (m)

N

∑
i=1

[
I(yi < m)− 1

2
]
+ O

(
N−3/4(log N)1/2(log log N)1/4). (7)

From (4), (5), (6), and (7), we conclude that110

N1/2(P̂S − PS) = N−1/2
N

∑
i=1

{[
I(am ≤ yi ≤ bm)−

(
F(bm)− F(am)

)]
− b f (bm)− a f (am)

f (m)

[
I(yi < m)− 1

2

]}
+ op(1).

It is convenient to make the following definition:111

ui = I(am < yi < bm)− b f (bm)− a f (am)

f (m)
I(yi < m). (8)

Since the yi are IID, as elements of a random sample, so are the ui, so that, to leading order112

asymptotically,113

N1/2(P̂S − PS) = N−1/2
N

∑
i=1

(
ui − E(U)

)
, (9)

where U denotes a random variable that has the distribution of which the ui are IID realisations.114

We may therefore apply the central-limit theorem to show that N1/2(P̂S − PS) is asymptotically115

normal, with expectation zero and variance equal to that of U. If we make the definition116

ûi = I(am̂ < yi < bm̂)− b f̂ (bm̂)− a f̂ (am̂)

f̂ (m̂)
I(yi < m̂),

where the density estimate f̂ could be a kernel density estimate, we can estimate var(U) by117

N−1
N

∑
i=1

û2
i −

[
N−1

N

∑
i=1

ûi

]2
.

We now turn to N1/2( ÎS − IS). From (3), we see that118



Version March 2, 2018 submitted to Econometrics 5 of 19

ÎS − IS =
µ
∫ bm̂

am̂
y dF̂(y)− µ̂

∫ bm

am
y dF(y)

µµ̂
. (10)

The numerator is clearly of order N−1/2, while the denominator is Op(1), being equal to µ2 +119

Op(N−1/2) To leading order, therefore, we can replace the denominator by its leading term, namely µ2.120

Make the definition121

µab =
∫ bm

am
y dF(y).

Now, by arguments like those used above for P̂S, we have to leading order that122

∫ bm̂

am̂
y dF̂(y) =

∫ bm

am
y dF̂(y) +

∫ am

am̂
y dF(y) +

∫ bm̂

bm
y dF(y)

=
∫ bm

am
y dF̂(y) + m

(
b2 f (bm)− a2 f (am)

)
(m̂ − m)

(11)

and123

∫ bm

am
y dF̂(y) =

1
N

N

∑
i=1

[
yi I(am < yi < bm)

]
. (12)

Note that124

µ̂ = µ +
1
N

N

∑
i=1

(yi − µ). (13)

If we make the definition125

vi =
1

µ2

[
µyi I(am < yi < bm)− µabyi −

µm
f (m)

(
b2 f (bm)− a2 f (am)

)
I(yi < m)

]
,

we see that, to leading order,126

N1/2( ÎS − IS) = N−1/2
N

∑
i=1

(
vi − E(V)

)
, (14)

with V a random variable whose distribution is that of which the vi are IID realisations. We may127

once more apply the central-limit theorem to conclude that N1/2( ÎS − IS) is asymptotically normal128

with variance equal to that of V.129

Define130

v̂i =
1

µ̂2

[
µ̂ I(am̂ < yi < bm̂)− µ̂abyi −

µ̂m̂
f̂ (m̂)

(
b2 f̂ (bm̂)− a2 f̂ (am̂)

)
I(yi < m̂)

]
where131

µ̂ab = N−1
N

∑
i=1

yi I(am̂ < yi < bm̂).

It is then clear that we can estimate var(V) by132

N−1
N

∑
i=1

v̂2
i −

[
N−1

N

∑
i=1

v̂i

]2
, (15)

and the covariance of U and V by133
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N−1
N

∑
i=1

ûi v̂i −
[

N−1
N

∑
i=1

ûi

][
N−1

N

∑
i=1

v̂i

]
. (16)

Remark. In some cases, the sample is not supposed to be completely random. Rather, observation i134

is associated with a weight pi, defined such that ∑N
i=1 pi = N. In that case, the empirical distribution135

function (1) should be replaced by136

F̂(y) =
1
N

N

∑
i=1

piI(yi ≤ y). (17)

Similarly, the mean income should be defined as µ̂ = N−1 ∑N
i=1 piyi, the expectation of the137

EDF (17), and term i in the sums (9) and (14) should be weighted by pi.138

The use of non-uniform weights also has consequences for the bootstrap. as discussed later.139

2.2. Definition in terms of the mean140

Although for the current study, it is not very sensible to define the range of middle-class incomes141

as delimited by multiples of the mean income, it may be useful in other circumstances to be able142

to perform inference on shares thus defined. Let a and b, a < b, define the middle class as those143

households that have incomes between aµ and bµ. The population share is then144

PS = F(bµ)− F(aµ), with P̂S = F̂(bµ̂)− F̂(aµ̂) = N−1
N

∑
i=1

I(aµ̂ < yi < bµ̂).

From this, we see that145

P̂S − PS = F̂(bµ̂)− F(bµ)−
(

F̂(aµ̂)− F(aµ)
)
.

Now, as usual neglecting terms of order N−1, we see that146

F̂(bµ̂)− F(bµ) =
∫ bµ

0
d(F̂ − F)(y) +

∫ bµ̂

bµ
dF(y)

= N−1
N

∑
i=1

[
I(yi < bµ)− F(bµ)

]
+ b f (bµ)(µ̂ − µ)

= N−1
N

∑
i=1

[
I(yi < bµ) + b f (bµ)yi −

(
F(bµ) + b f (bµ)µ

)]
, (18)

where f = F′ is the density, and the last equality makes use of (13). The terms in (18) clearly147

have expectation zero.148

It is straightforward now to see that, to leading order,149

N1/2(P̂S − PS) = N−1/2
N

∑
i=1

(
ui − E(U)

)
,

with ui = I(aµ < yi < bµ) + yi
(
b f (bµ)− a f (aµ)

)
and U a random variable with the distribution150

of which the ui are realisations. The asymptotic variance of N1/2(P̂S− PS) can therefore be estimated151

by152

N−1
N

∑
i=1

û2
i −

[
N−1

N

∑
i=1

ûi

]2
,

where ûi = I(aµ̂ < yi < bµ̂) + yi
(
b f̂ (bµ̂)− a f̂ (aµ̂)

)
, with f̂ a kernel density estimator.153
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For the income share, we have154

IS =
1
µ

∫ bµ

aµ
y dF(y) with ÎS =

1
µ̂

∫ bµ̂

aµ̂
y dF̂(y).

Analogously to (10), we have155

ÎS − IS =

µ
∫ bµ̂

aµ̂
y dF̂(y)− µ̂

∫ bµ

aµ
y dF(y)

µµ̂
.

Now, as in (11) and (12), to leading order we have156

∫ bµ̂

aµ̂
y dF̂(y) =

[∫ bµ

aµ
+

∫ aµ

aµ̂
+

∫ bµ̂

bµ

]
y dF̂(y)

= N−1
N

∑
i=1

yi I(aµ < yi < bµ) + µ
(
b2 f (bµ)− a2 f (aµ)

)
(µ̂ − µ)

= N−1
N

∑
i=1

[
yi I(aµ < yi < bµ) + µ

(
b2 f (bµ)− a2 f (aµ)

)
(yi − µ)

]
Here let us redefine µab as:157

µab =
∫ bµ

aµ
y dF(y).

Then158

N1/2( ÎS − IS) = N−1/2
N

∑
i=1

(
vi − E(V)

)
,

where159

vi =
yi
µ2

[
µ I(aµ < yi < bµ) + µ2(b2 f (bµ)− a2 f (aµ)

)
− µab

]
and

v̂i =
yi
µ̂2

[
µ̂ I(aµ̂ < yi < bµ̂) + µ̂2(b2 f̂ (bµ̂)− a2 f̂ (aµ̂)

)
− µ̂ab

]
with obvious definitions of f̂ and µ̂ab. Except for notational changes, the estimates (15) and (16)160

hold for this case as well.161

2.3. Definition by quantiles162

Let the two proportions, p lo and p hi, with p lo < p hi, define the middle class as the set of163

households whose incomes lie between the quantiles q lo and q hi, where F(q lo) = p lo and F(p hi) =164

q hi. Then the share of the population that belongs to the middle class is fixed at p hi − p lo. The income165

share is166

IS =
1
µ

∫ q hi

q lo

y dF(y),

and it can be estimated by167

ÎS =
1
µ̂

∫ ˆq hi

ˆq lo

y dF̂(y),
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where ˆq lo and ˆq hi are the p lo and p hi quantiles of the EDF F̂.168

By an asymptotic argument like those used in the preceding subsection, it can be seen that169

ÎS − IS =
1

µ2

[
µ
∫ ˆq hi

ˆq lo

y dF̂(y)− µ̂
∫ q hi

q lo

y dF(y)
]
+ Op(N−1). (19)

Neglecting terms of order N−1, we have170

∫ ˆq hi

ˆq lo

y dF̂(y) =
∫ q hi

q lo

y dF̂(y) +
∫ q lo

ˆq lo

y dF̂(y) +
∫ ˆq hi

q hi

y dF̂(y)

= N−1
N

∑
i=1

yi I(q lo < yi < q hi)− q lo
(

p lo − F̂(q lo)
)
+ q hi

(
p hi − F̂(q hi)

)
= p hiq hi − p loq lo + N−1

N

∑
i=1

[
yi I(q lo < yi < q hi)− q hiI(yi < q hi) + q loI(yi < q lo)

]
.

Define171

µlh =
∫ q hi

q lo

y dF(y).

Since172

E
(
Y I(q lo < Y < q hi)

)
= µlh, E

(
I(Y < q lo)

)
= p lo, and E

(
I(Y < q hi)

)
= p hi,

where Y is a random variable that has the distribution of which the yi are realisations, it follows173

that174

∫ ˆq hi

ˆq lo

y dF̂(y) = µlh + N−1
N

∑
i=1

(
wi − E(W)

)
,

where175

wi = yi I(q lo < yi < q hi)− q hiI(yi < q hi) + q loI(yi < q lo),

and W is a random variable that has the distribution of which the wi are realisations. From (19)176

it can now be seen that177

N1/2( ÎS − IS) = N−1/2
N

∑
i=1

(
vi − E(V)

)
,

where178

vi =
wi
µ

− yiµlh
µ2 ,

the vi being realisations of the distribution of V.179

The asymptotic variance of the asymptotically normal random variable N1/2( ÎS − IS) is180

therefore equal to the variance of V. This variance can be estimated in a distribution-free manner181

by182

N−1
N

∑
i=1

v̂2
i −

[
N−1

N

∑
i=1

v̂i
]2,

with183
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v̂i =
1
µ̂

{
yi I( ˆq lo < yi < ˆq hi)− ˆq hiI(yi < ˆq hi) + ˆq loI(yi < ˆq lo)

}
− yiµ̂lh

µ̂2 .

2.4. Accuracy measured by simulation184

Since everything in this section is asymptotic, it may be helpful to look briefly at evidence for185

finite-sample behaviour as revealed by simulation. For the case in which middle class incomes are186

defined as lying between specified multiples of the median income, random samples of different187

numbers of observations were drawn from the lognormal distribution, with an underlying standard188

normal distribution. The proportions a and b were set equal to 0.5 and 1.5 respectively. The values of189

the mean, median, and the population and income shares can be computed analytically, and are:190

m = 1, µ = 1.648721, PS = 0.413324, IS = 0.230863.

For each of 9999 samples, and for each sample size, n = 101, 201, 501, 1001, the estimates of these191

four quantities were obtained. The variances of the estimates of the shares, and their covariance, were192

estimated by the sample variances and covariance from the 9999 samples. These were compared193

with the estimates of the asymptotic variances and covariances, averaged over the samples. For the194

purposes of the comparison, the variances were multiplied by the sample size. Results are in Table 1.195

Table 1. Comparison of finite-sample and asymptotic variance; median definition

n var(P̂S) var( ÎS) cov(P̂S, ÎS)

Sample variances 101 0.239325 0.224096 0.176514
Averaged estimates 101 0.261119 0.218908 0.202878
Sample variances 201 0.244931 0.222913 0.180768
Averaged estimates 201 0.249148 0.207283 0.189229
Sample variances 501 0.245171 0.219862 0.180843
Averaged estimates 501 0.240752 0.200225 0.180011
Sample variances 1001 0.246202 0.218693 0.179762
Averaged estimates 1001 0.236738 0.197485 0.175393

With the middle class defined using the mean income, the proportions a and b were set to 0.4196

and 1.6. The mean and median are as before, and the exact shares are197

PS = 0.495379 and IS = 0.409690.

The results are in Table 2.198

Table 2. Comparison of finite-sample and asymptotic variance; mean definition

n var(P̂S) var( ÎS) cov(P̂S, ÎS)

Sample variances 101 0.289240 0.270821 0.251248
Averaged estimates 101 0.269630 0.262705 0.236283
Sample variances 201 0.295019 0.270204 0.254169
Averaged estimates 201 0.268601 0.259170 0.234529
Sample variances 501 0.290917 0.268718 0.237937
Averaged estimates 501 0.273562 0.259882 0.251659
Sample variances 1001 0.292915 0.268624 0.251931
Averaged estimates 1001 0.279508 0.262628 0.242509

Finally, using quantiles, the results in Table 3 are for the middle class contained between the199

0.2 quantile and the 0.8 quantile. (Recall that the population share is by definition always 0.8 − 0.2 =200

0.6.)201
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Table 3. Comparison of finite-sample and asymptotic variance; quantile definition

n var( ÎS)

Sample variances 101 0.137487
Averaged estimates 101 0.124903
Sample variances 201 0.145837
Averaged estimates 201 0.137819
Sample variances 501 0.147931
Averaged estimates 501 0.149558
Sample variances 1001 0.149601
Averaged estimates 1001 0.154112

The variances and covariance estimates derived in this section are clearly asymptotically correct,202

but are naturally not exact for finite n.203

3. Inference204

The results of the previous section allow us to construct asymptotic confidence intervals for the205

population and income shares of the middle class, according to the different definitions considered.206

But, because we can also construct asymptotically pivotal functions, it is possible to construct207

bootstrap confidence intervals, and to perform bootstrap tests of specific hypotheses about these208

shares.209

3.1. Data210

The data used for the empirical analysis in this paper come from Canadian Census Public Use211

Microdata Files (PUMF) for Individuals for 1971, 1981, 1991, 2001, and 2006. Beach (2016) used these212

data, along with data from other sources, for his comprehensive account of the evolving fate of the213

Canadian middle class. In the Census files, the term earnings refers to annual earnings in the full year214

before the Census. Although the individuals of the samples provided for each of the census years215

are not identified by name, for obvious reasons, they are characterised by age (or age group), sex,216

and the number of weeks worked in the year. Income is split into wage income and income from217

self-employment. In the census data from 1991 onwards, individuals are assigned weights in order218

that the weighted sample should be more representative of the population than the unweighted one.219

However, the weights vary little in the samples, and, indeed, they are all identical in the 2006 data.220

They are therefore not taken into account in the subsequent analysis.221

It is of interest to compare formally the fates of men and women. Accordingly, for each census222

year, two samples are treated separately, one with data on men, the other on women, only. In both223

cases, individuals younger than 15 years of age are dropped from the sample, as well as individuals224

who did not work in that year, or for whom the information on weeks worked is missing. In addition,225

income from wages and salaries and income from self-employment are simply combined to yield the226

income variable.227

3.2. Confidence intervals228

The confidence intervals given in this section are either asymptotic, using the estimates of229

asymptotic variances derived in the previous section, or bootstrap intervals, of the sort usually called230

percentile-t, or bootstrap-t; see for instance DiCiccio and Efron (1996), Davison and Hinkley (1997),231

and Hall (1992) for a discussion of the relative merits of different types of bootstrap confidence232

interval.233

A bootstrap-t interval is constructed as follows using a resampling bootstrap. For a suitable234

number B of bootstrap repetitions, a bootstrap sample is created by resampling from the original235

sample. Let the parameter of interest be denoted by θ, its estimate from the original sample by θ̂, and236

its standard error by σ̂θ . If the true, or population, value is θ0, an asymptotically pivotal quantity is237
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τ ≡ (θ̂ − θ0)/σ̂θ . A bootstrap sample yields a parameter estimate θ∗ and a standard error σ∗
θ . Then238

the bootstrap counterpart of τ is τ∗ ≡ (θ∗ − θ̂)/σ∗
θ , since θ̂ is the “true” parameter value for the239

resampling bootstrap data-generating process (DGP).240

If non-uniform weights are associated with the sample observations, then the reampling should241

also be non-uniform, whereby observation i is resampled with probability pi/N, where pi is the242

weight associated with the observation. This amounts to generating bootstrap samples from the243

weighted EDF (17). Then, each bootstrap sample is to treated as though it were a genuinely random244

sample, so that the weights do not appear in the estimation of the shares or in their standard errors.245

However, since, in some of the samples analysed here there are no weights, and, even if they are246

present, they are very nearly, if not exactly, uniform, all of the empirical results are computed without247

use of weighting.248

The distribution of τ∗ is estimated by the empirical distribution of its B realisations. For an249

equal-tailed confidence interval of confidence level 1 − α, the α/2 and 1 − α/2 quantiles of the250

distribution are estimated by the order statistics α(B + 1)/2 and (1 − α/2)(B + 1) of the realisations251

of τ∗. Let these estimated quantiles be q∗α/2 and q∗1−α/2. The bootstrap-t confidence interval is then252

[θ̂ − σ̂θq∗1−α/2, θ̂ − σ̂θq∗α/2].

This approach requires α(B + 1)/2 to be an integer; see, among many other references,253

Davidson and MacKinnon (2006).254

Tables 4, 5, 6, 7, and 8 present point estimates as well as asymptotic and bootstrap confidence255

intervals, at nominal confidence level of 95%, of the population and income shares, for the256

median-based definition of the middle class in 1971, 1981, 1991, 2001, and 2006.257

Table 4. Estimates and confidence intervals; 1971

P̂S ÎS

Male point estimate 0.544 0.492
59123 obs asymptotic interval [0.539, 0.549] [0.488, 0.496]
median $6000 bootstrap interval [0.540, 0.554] [0.487, 0.497]

Female point estimate 0.399 0.362
32164 obs asymptotic interval [0.392, 0.407] [0.355, 0.369]
median $2900 bootstrap interval [0.392, 0.410] [0.353, 0.377]

Table 5. Estimates and confidence intervals; 1981

P̂S ÎS

Male point estimate 0.519 0.481
143248 obs asymptotic interval [0.515, 0.522] [0.478, 0.484]
median $15715 bootstrap interval [0.515, 0.522] [0.477, 0.485]

Female point estimate 0.390 0.335
101619 obs asymptotic interval [0.386, 0.394] [0.331, 0.339]
median $7800 bootstrap interval [0.387, 0.393] [0.331, 0.339]
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Table 6. Estimates and confidence intervals; 1991

P̂S ÎS

Male point estimate 0.483 0.436
234636 obs asymptotic interval [0.481, 0.486] [0.434, 0.438]
median $27000 bootstrap interval [0.481, 0.486] [0.434, 0.439]

Female point estimate 0.390 0.318
196143 obs asymptotic interval [0.386, 0.392] [0.316, 0.321]
median $15139 bootstrap interval [0.385, 0.391] [0.314, 0.321]

Table 7. Estimates and confidence intervals; 2001

P̂S ÎS

Male point estimate 0.437 0.364
227828 obs asymptotic interval [0.435, 0.440] [0.363, 0.366]
median $31700 bootstrap interval [0.429, 0.440] [0.354, 0.368]

Female point estimate 0.414 0.333
202491 obs asymptotic interval [0.411, 0.416] [0.330, 0.335]
median $20000 bootstrap interval [0.411, 0.416] [0.330, 0.335]

Table 8. Estimates and confidence intervals; 2006

P̂S ÎS

Male point estimate 0.418 0.302
238356 obs asymptotic interval [0.416, 0.420] [0.300, 0.304]
median $35000 bootstrap interval [0.400, 0.420] [0.282, 0.305]

Female point estimate 0.415 0.320
202491 obs asymptotic interval [0.413, 0.417] [0.318, 0.322]
median $24000 bootstrap interval [0.413, 0.445] [0.318, 0.355]

Remarks. In many cases, the asymptotic and bootstrap intervals very nearly coincide. The bootstrap258

intervals are a bit wider for 1971. For 2001 and 2006, however, the bootstrap population-share and259

income-share intervals for males extend far to the left of the asymptotic ones. For females, the pattern260

is different. In 2001, the asymptotic and bootstrap intervals are very close, but, in 2006, the bootstrap261

intervals extend far to the right of the asymptotic ones.262

The reason for these phenomena with the 2001 and 2006 data emerges from looking at the263

distributions of the bootstrap statistics, of which kernel density plots in 2006 for males and for females264

are shown in Figure 1 and Figure 2 respectively.265

One might expect the plots to resemble roughly a plot of the standard normal density. This266

would be the case if the long right-hand tail for men, and the long left-hand tail for women, each267

with a second mode, are neglected. It is well known that the resampling bootstrap can give highly268

misleading results with heavy-tailed data; see for instance Davidson (2012).269

By looking at kernel density plots in Figure 3 of the sample income distributions for men and270

women in 2006, one can see evidence of the heavy right-hand tails for both sexes.271
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Figure 1. Kernel density plots of bootstrap statistics; 2006 males

Figure 2. Kernel density plots of bootstrap statistics; 2006 females

Figure 3. Kernel density plots of income distributions in 2006

In addition, for all of the twenty-first century data, there is clear evidence of top-coding, since,272

in all cases, there are several observations equal to the largest income in the sample, while the next273

highest income is much lower. For instance, in the 2006 male sample, out of the 238,356 observations,274
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there are 121 equal to the highest income of $1,202,480, while the next highest income in the sample275

is $872,522.276

However, there is no reason to think that top-coding would have any effect on the estimated277

population shares, since their exact values do not matter. They do, of course, for the income278

shares, and so these are overestimated with top-coding. It turns out that the reason for the bimodal279

distributions of the bootstrap statistics is quite unrelated to top-coding. A closer look at the data for280

2006 shows that a phenomenon that we may call “heaping” occurs in the data. What this means is that,281

for each recorded income, there are multiple instances, with comparatively large gaps between the282

distinct recorded incomes. While there is some measure of a similar heaping in the twentieth-century283

data, the phenomenon is much less marked. As an example, there is only one observation in the 1971284

male data equal to the maximum value.285

The consequences of this heaping are most salient with the 2006 data. For men, the median286

income is $35,000, and there are no fewer than 3,228 observations of incomes apparently exactly equal287

to $35,000. The upper and lower limits for middle-class incomes that have been used in this study288

are $52,500 and $17,500 respectively. There are no observations of incomes equal to either of these289

limits, and this follows inevitably from the fact that all incomes no greater than $200,000 are recorded290

as exact integer multiples of $1,000.291

The data for women present a different picture, because the limits of $12,000 and $36,000 are292

integer multiples of $1,000, and all incomes no greater than $100,000 are recorded as integer multiples293

of $1,000. The maximum income of $310,136 is assigned to 99 observations; the median of $24,000 to294

3,316 observations, the lower limit of $12,000 to 4,282 observations, and the upper limit of $36,000 to295

2,694 observations. The second highest recorded income is $306,763.296

What this has meant for the bootstrap is that, of the 999 bootstrap repetitions with the data297

for men, all but 146 had a median of $35,000, the others having a median of $36,000. For the latter,298

the limits for middle-class income were $18,000 and $54,000, and including the 2,052 observations299

of $54,000 in the numbers of the middle class greatly increases the population and income shares in300

those bootstrap samples relative to the shares of the 853 samples with a median of $35,000. At the301

other end, increasing the limit from $17,500 to $18,000 made no difference to the numbers, since there302

are no observations recorded in the interior of the range of the increase.303

A similar analysis can be conducted with the data for women, but the reason for the bimodal304

distributions of the bootstrap statistics is clear: it arises on account of the data heaping. With the 2001305

data, a bimodal distribution might have been expected, but all but five out of 999 bootstrap samples306

had a median equal to that of the original data, and, as expected, the distribution of the bootstrap307

statistics is unimodal in that case.308

The data for years before 2001 have a much lesser amount of heaping and have unimodal309

bootstrap distributions. This no doubt implies that the bootstrap results are credible, although this310

conclusion is not of much worth since the bootstrap and asymptotic confidence intervals are nearly311

coincident.312

3.3. Smoothing313

An obvious remedy for the heaping in the later datasets is to smooth them. The smoothed sample314

distribution may well be a better estimate of the population distribution than the heaped estimate,315

since the heaping is manifestly an artefact of the way in which the datasets were constructed. As316

always with smoothing, a troublesome question is the choice of bandwidth. Since the heaping occurs317

at integer multiples of $1,000, the bandwidth h should be of a comparable magnitude in order to318

avoid an excessively discrete distribution. For h = 1000, the raw EDFs of the 2006 data for men and319

women are plotted in Figure 4 along with the smoothed EDFs, for the range of incomes from half the320

median to 1.5 times the median. The heaped nature of the data for both sexes is quite evident in the321

green, unsmoothed, plots.322
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The (cumulative) kernel used for smoothing was the integrated Epanechnikov kernel. The323

smoothed estimate of the distribution is324

Fsm(y) =
1
N

N

∑
i=1

K
(
h−1(yi − y)

)
, (20)

where h is the bandwidth, and the cumulative kernel K is defined as325

K(z) = I
(
|z| ≤

√
5
)( 3

4
√

5
(z − z3/15) +

1
2
)
+ I

(
z >

√
5
)
. (21)

where h is the bandwidth. Other choices of h greater than around 500 give qualitatively similar326

results.327

a Males b Females

Figure 4. Smoothed (red) and unsmoothed (green) EDFs for 2006 data

For bootstrapping, resampling from the unsmoothed EDF is replaced by resampling from328

the smoothed EDF. Since the heaping phenomenon is banished by the smoothing, we can expect329

dramatically different results, in particular, a unimodal distribution of the bootstrap statistics. The330

CDF (20) describes a mixture distribution which assigns a weight of 1/N to the each of the331

distributions characterised by the terms in the sum. It is easily checked that K in (21) is a valid332

CDF, with support [−
√

5,
√

5]. The term indexed by i in (20) has support [yi − h
√

5, yi + h
√

5].333

In order to draw from the distribution (21), one starts from a uniform variate p from the U(0,1)334

distribution, and the draw is then K−1(p). The analytic form of K−1 is not, I think, well known. and335

so I give it here for reference. It is336

K−1(p) = 2
√

5 cos
(1

3
(
2π − cos−1(1 − 2p)

))
.

Thus, to draw from distribution (20), one may first draw the index i from the uniform distribution337

on {1, 2, . . . , N}, then draw p from U(0,1), and get the draw338

y∗ = yi + hK−1(p).

The effect is to resample from the unsmoothed distribution and then add some smoothing “noise”339

from the Epanechnikov distribution.340

Although the smoothing preserves the mean of the distribution, it does not preserve the median,341

nor the population or income shares. If we accept the argument that the smoothed CDF is a better342
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estimate of the true distribution than the unsmoothed one, then the smoothed median, and the shares343

in the smoothed distribution are also better estimators. In addition, the smoothed shares are the “true”344

values for the bootstrap DGP, and so the bootstrap statistics should test the hypothesis that they are345

true, not the hypothesis that the unsmoothed shares are true.346

With the 2006 data for men, the new estimates of the shares are 0.421 for the population and347

0.307 for income, slightly higher than the estimates from the raw data. The bootstrap confidence348

intervals are, for the population share, [0.419, 0.423] and, for the income share, [0.305, 0.310]. They are349

of roughly the same width as the asymptotic intervals.350

With the data for women, the new share estimates are 0.393 and 0.298, substantially lower than351

the unsmoothed estimates, and the confidence interval for the population share is [0.390, 0.395], and,352

for the income share [0.295, 0.301]. Unsurprisingly, the smoothed share estimates are roughly in the353

middle of the respective intervals.354

In Figures 5 and 6, kernel density plots are shown for the distribution of the bootstrap statistics,355

Figure 5 for men, Figure 6 for women. There is no trace of bimodality, and so it seems that smoothing356

has indeed corrected the heaping problem.357

a Population share b Income share

Figure 5. Kernel density plots of smoothed bootstrap statistics; 2006 males
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a Population share b Income share

Figure 6. Kernel density plots of smoothed bootstrap statistics; 2006 females

3.4. Hypothesis tests358

In this section are to be found the results of testing various hypotheses. All of the test statistics359

are asymptotic, as we have seen that when bootstrap inference differs greatly from asymptotic, the360

unsmoothed bootstrap, at least, is likely to be unreliable.361

First are tests of hypotheses that the population and income shares for each sex did not change362

from one census until the next one. For instance, can one reject the hypothesis that the population363

share of the male middle class did not change from 1981 to 1991? Next are tests of hypotheses that364

the shares of men and women are the same in each census. For instance, can one reject the hypothesis365

that the income shares of men and women were the same in 2001?366

The test results are expressed as asymptotic t statistics, rather than asymptotic P values, since in367

most cases the hypothesis is rejected strongly, and a P value very close to zero does not let one judge368

just how strong the rejection is. However, in some cases the hypotheses are not rejected, and in some369

other cases, the sign of the statistic differs from the signs of the other statistics for the same sort of370

hypothesis.371

For the first group of tests, the results of which are found in Table 9, the sign of the statistic is372

positive if the decline in a share from the earlier to the later census is positive. A negative statistic373

indicates that the estimated share rose between the two censuses.374

Table 9. t statistics for hypothesis of no change in share between consecutive censuses

Period PS (men) PS (women) IS(men) IS (women)

1971-1981 8.571726 2.299586 4.740735 6.571228
1981-1991 16.702812 0.311744 26.933620 6.875789
1991-2001 26.128047 -12.835861 53.350095 -7.954860
2001-2006 11.322294 -0.752581 43.943449 7.824492

Remark. All but two hypotheses of no change between two censuses are strongly rejected. The two375

exceptions concern the female population share, which did not change significantly either between376

1981 and 1991 or between 2001 and 2006. There are two significantly positive increases, for the female377

population and income shares from 1991 to 2001.378
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In Table 10 are found the statistics for testing the hypothesis that the share of men and women is379

the same for a given census. A positive statistic means that the estimated male share is greater than380

the female.381

Table 10. t statistics for hypothesis of equal shares for men and women

Census PS IS

1971 32.526094 32.306558
1981 49.137099 60.112426
1991 50.265363 69.768414
2001 12.902812 20.345573
2006 7.824492 -12.143588

4. Conclusions382

The main contribution of this paper is probably the theoretical part. The empirical results are383

not really surprising, although they do document clearly how the population and income shares of384

the male middle class have fallen over the period since 1970. In addition, one sees the results of the385

considerable increase in female labour market participation. Although the bootstrap has not shown386

itself especially useful for formal inference, the evolution over time of the distribution of the bootstrap387

statistics shows very clearly the increasing polarisation of Canadian society, with the growth of a388

heavy right-hand tail in the income distributions of both men and women.389

The main obstacle to inference, whether asymptotic or bootstrap, with the twenty-first century390

data has been seen to be the problem of heaping, or excessively rounding, the data. The smoothing391

technique proposed here appears to lead to more reliable inference, but truly reliable inference would392

need better data.393
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