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Abstract

A decision maker with incomplete preferences learns when they

are able to order additional pairs of elements from a finite choice set.

When learning satisfies a set of behavioural axioms, every new pref-

erence relation preserves the previous relation, but extends it (in the

order-theoretic sense) until preferences settle on one - among finitely

many - complete orderings in a finite number of learning periods.

Thus, we associate with the resulting set of learning processes (the

different ways in which learning occurs) the set of order-extensions of

the preference relation of an indecisive decision maker. Several appli-

cations of the framework are then discussed, including the measure-

ment of indecisiveness, how learning occurs from social interactions,

the implications of learning for axioms of revealed preference, and for

choice deferral.
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One does not argue about tastes for the same reason that one does

not argue about the Rocky Mountains - both are there, and will

be there next year too, and are the same to all men (Stigler and

Becker, 1977).

Because endogenous preferences involve learning or genetic changes,

behaviour in the same situation changes over time (Bowles, 2004).

1 Introduction

In the classical theory of choice, it is generally taken that the decision maker

is rational if their preference relation over a choice set is transitive and com-

plete. By the relation being complete, we mean that for any two alternatives

x and y the decision-maker either prefers x to y, y to x or is indifferent be-

tween x and y. Though completeness is a generally accepted axiom, there

is increasing evidence that decision makers are sometimes unable to order

pairs of alternatives. A decision maker who is sometimes unable to order

alternatives in the choice set is said to have incomplete preferences, or is

said to be indecisive. Danan and Ziegelmeyer (2006) and Cettolin and Riedl

(2015) provide evidence that preferences are incomplete in experiments in-

volving choices under risk and uncertainty, respectively. Qiu and Ong (2017)

design an experiment aimed at disentangling indifference from indecisiveness

in choice and find strong evidence in favour of the latter. Costa-Gomes et al.

(2016) find that forcing subjects to choose increases the extent to which

their choice behavior is inconsistent. They report that a substantial fraction

of subjects’ decisions can be explained by preferences being incomplete.

Incompleteness of preferences raises many conceptual issues in relation to

diverse questions such as the definition of transitivity (Mandler, 2005), utility

representation (Richter, 1966; Peleg, 1970; Ok, 2002; Dubra, Maccheroni and

Ok, 2004), the axioms of revealed preference (Arrow, 1959; Sen, 1971; Eliaz

and Ok, 2006) or the measurement of decisiveness (Gorno, 2018), to mention

a few such areas. Incompleteness of preferences also raises the question as to

whether decision makers can learn to resolve their indecisiveness. Thus, the

purpose of this paper is three-fold. The first purpose of the paper is to develop
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a theory of learning in the context of incomplete preferences. We naturally

define learning as the process of being able to compare an increasing subset

of all the pairs of alternatives in a choice set X. The central concern here is,

starting from a situation where agents are completely indecisive, to formalize

learning as the process of acquiring transitive and complete preferences.

The second purpose of the paper is to present the set of order extensions

of an incomplete preference relation as a general framework for examining

models of indecisiveness in economics. The set of order extensions of a finite

ordered set was studied extensively by Brualdi, Jung and Trotter (1994) and

Pouzet et al. (1995) in the mathematical sciences, but it would be fair to say

that its importance in decision theory has not received the attention we feel

it deserves. Specifically, we relate the type of learning studied in this paper

to sequences of ordered sets in the set of order extensions of an incomplete

preference relation. We also develop several applications that follow from the

type of learning studied in this paper, that exploit the structure of the set of

order extensions.

The third purpose is to provide a unified framework that reconciles the

two radically different views of the decision-maker as rational versus bound-

edly rational, as emphasized by the two contrasted opening quotations of the

paper. Specifically, we view learning as the connecting thread that trans-

forms an indecisive decision-maker with time-varying preferences into the ra-

tional individual with complete and time-invariant preferences, where most

textbook discussions of the theory of the rational decision-maker begin.

The context of bounded rationality considered in this paper is rooted in

the decision maker’s inability to order some pairs of alternatives. Through-

out this paper the choice set (the grand set of alternatives) X is finite and

there are three building blocks in the framework we develop: (i) the set of of

reflexive and transitive preference relations on X is called the set of tastes,

(ii) a sequence L of preference relations on the set of tastes is called a learning

process and (iii) the t-th term of a learning process L is called the t-th stage

of learning associated with L. The main result of the paper is to associate

learning processes satisfying a set of behavioural axioms with sequences of

preference relations, specifically maximal chains, in the set of order exten-

sions of the preference relation of an indecisive decision maker. Particularly,
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when learning satisfies the behavioural axioms, every new preference rela-

tion is shown to preserve the previous preference relation, and extends it

(in the order-theoretic sense). Ultimately, preferences are shown to settle in

finite number of learning stages on one (among finitely many) transitive and

complete preference relations.

Several additional results follow from the main result discussed above.

Using a famous theorem in order theory (Dilworth, 1950), we exploit the

property that the set of order extensions of the indecisive decision maker

is ranked (Brualdi, Jung and Trotter, 1994; Pouzet et al., 1995) in order to

partition this set into subsets corresponding to the various stages of learning.

This decomposition of the set of order extensions is exploited to establish that

the behavioural axioms of learning deliver a theory of monotonic learning.

That is, along any learning processes described by the axioms, indecisiveness

steadily decreases, until preferences settle in a finite number of learning peri-

ods on a complete preference relation. Thus, under the behavioural axioms,

the possibility of learning eventually endows decision makers with rational

(i.e. transitive and complete) preference orderings.

We provide several different applications of the framework that is devel-

oped. Firstly, following Ok (2002) and Gorno (2018), we revisit the problem

of ordering decision makers by the extent of their indecisiveness. Here we

provide two new orderings of indecisiveness, and we also discuss how these

orderings relate to existing approaches in the literature. We then turn to

the discussion on how preferences and norms are acquired (Carpenter and

Nakamoto, 1989; Druckman, 2004; Bowles, 1998; Young, 2015), and we re-

flect on how the process of social interactions may shape preference formation

in the context of learning as defined in this paper.

A further application of the paper consists in revisiting the axioms of

revealed preference in the context of incomplete preferences (Eliaz and Ok,

2006), where, here, we allow for learning. Our discussion follows the frame-

work of extended choice problems as developed by Bernheim and Rangel

(2007) and Salant and Rubinstein (2008), allowing us to provide a possi-

ble formulation of the weak axiom of revealed non-inferiority (WARNI) in

the context where decisions are subject to framing effects. It is clear that

as a consequence of learning, the preference ordering of the decision maker
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changes, and as a result, we have to live with violations of the weak axiom of

revealed preference (WARP) as well as WARNI. Though we can only state

negative results in this context, we nonetheless provide some results about

where in the various stages of learning the resulting weak axioms of revealed

preference and non-inferiority may be violated. Our final application builds

on the framework of extended choice correspondences, where we study the

timing of choice deferral (Gerasimou, 2018) in the context of learning.

Clearly, learning takes many different meanings in the discipline of eco-

nomics. Providing a detailed survey of this area is beyond the scope of this

paper, and instead we mention a few diverse examples. Learning in growth

theory enables producers to adopt more efficient technologies in the context

of learning by doing (Arrow, 1962), learning by learning and other gener-

alizations (Greenwald and Stiglitz, 2015). In the field of macroeconomics,

learning pertains to the ability to form forecasts of fundamental economic

aggregates such as prices, shadow prices, etc. (Evans and McGaw, 2015). In

behavioural game theory for instance, learning enables players to implement

Nash equilibrium by trial and error (Young, 2009). Additionally, the liter-

ature has investigated how, when, and to what the extent players following

certain processes of learning, adaptation, and imitation will end up play-

ing some alternative variants of equilibrium (Fudenberg and Levine, 2009).

An important branch of the experimental economics literature on the other

hand, has examined what type of learning rules subjects tend to adopt when

they learn from experience, by identifying the robustness of behavioural reg-

ularities (Erev and Haruvy, 2016).

The paper is structured as follows: Section 2 contains definitions of key

concepts pertaining to ordered sets. We also discuss the set of order exten-

sions and illustrate choice in three popular models of bounded rationality in

relation to the set of order extensions. Section 3 introduces the behavioural

axioms of learning and presents the central result of this paper relating learn-

ing processes to sequences of preference relations in the set of order exten-

sions. Section 4 develops the four different applications that follow from

the main result of the paper. Section 5 concludes the paper. An appendix

develops further examples and contains the proofs of the main results.
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2 The Set of Order Extensions

2.1 Poset Concepts

Let Y be an l-element set. A binary relation on Y is reflexive if x � x for

all x ∈ Y . The relation � is transitive if x � y and y � z jointly imply

x � z for all x, y, z ∈ Y . A pre-order (Y,�) is a reflexive and transitive (not

necessarily complete) relation � on a set Y . Two distinct elements x and y

of Y are said to be comparable if either x � y or y � x. The notation x||y
is used to denote that x and y are not comparable. The set of incomparable

elements in Y associated with the binary relation � is defined as

inc(Y,�) := {(x, y) ∈ Y × Y : x||y}

and its complement comp(Y,�) := (Y × Y )\inc(Y,�) is the set of com-

parable pairs. When every pair (x, y) ∈ Y × Y is �-comparable we say that

� is a complete relation.

The focus in this paper is on indecisiveness with respect to the asymmetric

part of a pre-order �. That is, we are assuming that a decision maker

recognizes all the elements that are equivalent to one particular element, but

is unsure how to order a and b when a and b do not belong to the same

indifference class. More formally: assume (Y,�) is a finite pre-ordered set

and for n ≤ l, let the collection of sets Φ = {Φ1, ...,Φn} be a partition of Y

into n indifference classes. A System of Distinct Representatives (SDR) of

the set Y is a collection of elements x1, ..., xn such that for each i = 1, ..., n

there is a unique xi ∈ Φi. Because Φ = {Φ1, ...,Φn} is a partition of Y, we

have that xi � xj for all i, j ∈ {1, ..., n}. Now gather the SDR into a set

X := {x1, ..., xn} ⊆ Y. The restriction of the pre-order relation � to the

subset X produces a ordered set with additional structure: It is clear that

� is reflexive and transitive on the subset X. Now take a pair (xi, xj) in

X2 and assume that xi � xj and xj � xi. Because X is constructed as an

SDR, it follows that xi and xj can only be one unique element. We therefore

conclude that xi � xj and xj � xi imply xi = xj. A pre-order with the

additional property - known as antisymmetry - that for all (xi, xj) such that

xi � xj and xj � xi there results xi = xj is known as a partially ordered set.
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Such ordered pairs (X,�) are often also called ordered sets or posets.

Our interest from here on then is in properties of an n-element partial

order (X,�). An element x of (X,�) is a minimal element if there is no

y ∈ X such that y 6= x and y � x. If X has several minimal elements then

these elements are pairwise incomparable. If (X,�) has a unique minimal

element x̂ then x̂ is also called the minimum element. Dually we define

maximal elements and maximum.

For any reflexive, antisymmetric and transitive relation � on X, we de-

fine a �-chain to be a sequence of ordered elements x1 � x2 � · · · � xm. We

define a �-antichain to be a sequence of elements that are pairwise incom-

parable by the � relation. We define y to be a cover of x, written x C y, if

x � y and additionally if there is a z ∈ X such that x � z � y, then either

z = x or z = y. A maximal chain is a sequence of covers x1 C x2 C · · · C xm

that is not a proper subset of any another chain of (X,�). A complete or

linear order (X,�) in this paper refers to a partial order where all elements

of X are comparable by the relation �, so that (X,�) has the structure of a

chain.

Two important summary statistics of finite posets are height and width.

To define these concepts, we first observe that the set of chains of the poset

(X,�) may be partially ordered by set inclusion. The maximal elements

of this set are specifically maximal chains. Any chain C with a maximum

number of elements is called a maximum chain. The height of the poset

(X,�), denoted height(X,�) is equal to the number of elements h := |C|
of a maximum chain. Similarly, the set of antichains of the poset (X,�)

may be ordered by set inclusion, and we may define maximal and maximum

antichains. If S is a maximum size antichain of (X,�), the width of the poset

is accordingly defined as the cardinality of S, and is denoted width(X,�).

Height is a measure of the degree of completeness of the poset while the

width of a poset is a measure of its incompleteness. We note for instance

that for an n-element set X, when (X,�) has the structure of a chain, height

(X,�) = n and width(X,�) = 1. At the other end, when (X,�) has the

structure of an antichain, height(X,�) = 1 and width(X,�) = n.
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2.2 Choice and the Set of Order Extensions

An order-extension of a poset (X,�) is a relation �e which preserves �, but

allows for more pairs of X to be compared, making (X,�e) a more complete

relation. Formally, the ordered set (X,�e) is an order -extension of (X,�)

whenever for all x, y ∈ X such that x � y there holds x �e y. A linear

extension of (X,�) is an order-extension of (X,�) that produces a complete

ordering. Any such linear extension has n∗ :=

(
n

2

)
comparable pairs from

the set X×X, and Szpilrajn (1930)’s theorem ensures that every poset (X,�)

has a linear extension.

In this paper, the set of order extensions of an n-element antichain (X,�0)

will play a prominent role. The set of order extensions of an n-element

antichain (X,�0) is a set of posets that is ordered by completeness (Brualdi,

Jung and Trotter, 1994). Specifically, every order extension of the antichain

(X,�0) is an element of the set of order extensions, and Ei := (X,�i) is

ranked lower than Ej := (X,�j) (written Ei l Ej) if Ej := (X,�j) is an

order extension of Ei := (X,�i). Every order extension of (X,�0) has k ∈
{0, ..., n∗} comparable pairs from the set X ×X. The extension with k = 0

comparable pairs is the antichain (X,�0), which defines the least element of

the set of order extensions. Each maximal chain in the set of order extensions

is a sequence of order covers, that has for minimum element E0 := (X,�0),

and for maximum element a linear order Eλ := (X,�λ). An element (i.e., a

partial order) Eq := (X,�q) is a cover of Ei := (X,�i), written Ei � Eq, if

there is an order extension Ej := (X,�j) whereby Ei lEj lEq, then either

Ei = Ej or Eq = Ej. Every maximal element of the set of order extensions

of the n-element antichain (X,�0) is a linear order, and there are n! such

maximal elements. Furthermore, given that the set of order extensions is the

set of all extensions of the antichain (X,�0), this set is exhaustive in the

sense that it contains all posets that can be constructed from the choice set

X.

We call ext(X) the set of order extensions of the n-element antichain

(X,�0). Consider a maximal chain M = E0 � E1 � · · · � En∗ in the set of

order extensions. For a specific order relation Ei ∈ ext(X), the set of order

extensions of Ei is a subset of ext(X). The minimum element of this subset
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Figure 1: The Set of Order Extensions of Antichain X = {x, y, z}
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is Ei, and the maximal elements associated with this subset are also linear

orders. One purpose of this paper is to develop the relation between maximal

chains in the set of order extensions and learning processes that stem from a

behavioural theory of learning. In the simple case with X = {x, y, z} we can

construct the set of order extensions as shown in figure 1 of the paper. Each

poset in figure 1 is represented by a Hasse diagram, where an edge connecting

a lower element xi to a higher element xj indicates that xj is a cover of xi

within the poset. Because the set of order extensions is a poset of posets, a

single edge connecting a lower element Ei to a higher element Ej indicates

that Ej is an order cover of Ei within the set of order extensions. Since the

set of order extensions is exhaustive, each such poset that can be constructed

form X is depicted in the Hasse diagram of figure 1. The sequence of four

shaded posets in figure 1 constitutes a maximal chain in the set of order

extensions of antichain X = {x, y, z}. In the case of a four-element poset

X = {a, b, c, d}, we may similarly illustrate a maximal chain in the set of

order extensions as in figure 2.

We see the set of order extensions serving a dual purpose in relation to

the existing literature on bounded rationality. Firstly, by associating specific

models of bounded rationality with particular elements of the set of order

extensions, we may derive further results into how learning affects behaviour.

The second purpose in relation to models of bounded rationality is to pro-

vide a natural framework for examining comparative statics of changes in

decisiveness along maximal chains in the set of order extensions. We illus-

trates these two points in the context of several popular models of bounded

rationality.

2.2.1 Satisficing

The literature has studied various versions of the satisficing heuristic (Simon,

1955). We here focus on a special case of Rubinstein and Salant (2006).1

For the sake of simplicity, let X = {x, y, z} be a choice set. The decision-

maker (DM) has in mind a partition of the grand set X into satisfactory

and unsatisfactory alternatives. Formally, let S (resp., U) denote the set of

1See also Caplin and Dean (2011) and Papi (2012) as different approaches to satisficing.
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satisfactory (resp., unsatisfactory) alternatives in X. Assume, for simplicity,

that S 6= ∅. The DM behaves as follows: the DM sequentially goes through

the alternatives in X one by one (i.e, according to an exogenously given

order/list 〈xl(1), xl(2), xl(3)〉, where xl(1) is the first element examined by the

DM), stops searching as soon as they find the first satisfactory alternative,

and chooses the first satisfactory alternative.

Let C = (�C0 ,�C1 ,�C2 ,�C3 ) denote a maximal chain in the set of order

extensions of figure 1. Define SCt := max(X,�Ct ) as the set of satisfactory

alternatives at the preference relation �Ct and UC
t := X \ SCt as the set

of unsatisfactory alternatives. That is, we call satisfactory the set of �Ct -

maximal alternatives in X and unsatisfactory any remaining alternatives.

Note that SCt is an antichain. Note also that 〈SC0 , SC1 , SC2 , SC3 〉 is a sequence

of sets with the properties that (i) SC0 = X, (ii) SCk ⊆ SCk−1 for any k =

1, . . . , 3 and (ii) |SC3 | = 1. Hence, initially the DM regards all alternatives

to be satisfactory. Then, their set of satisfactory alternatives progressively

shrinks until it becomes a singleton at period 3. When the set of satisfactory

alternatives is a singleton, the DM is a maximiser, in that they are happy

only when they identify the unique best alternative in the choice set.

Throughout we omit to specify the reflexive parts of the posets. To

illustrate, let C be the maximal chain in the set of order extensions shaded

in figure 1 and characterised by the following sequence of relations.

�C0 = {}, �C1 = {(y, x)}, �C2 = {(y, x), (y, z)}, �C3 = {(y, x), (y, z), (z, x)}
(1)

Hence, SC0 = {x, y, z}, SC1 = SL2 = {x, z}, and SC3 = {x}.
Note that when the DM is at period 0, the DM chooses a from any list

〈a, xli , xlj〉, because all alternatives are satisfactory. In contrast, when the

DM is in periods 1 and 2, there exists no list from which the DM chooses y,

but there exist lists from which the DM chooses x or z (e.g. the DM chooses

x from 〈y, x, z〉). Finally, when the DM is in period 3, the DM chooses x

from any list, so the order according to which alternatives are presented to

the DM is irrelevant.

In summary, the set of order extensions provides a description of the

process through which a satisficing DM learns to become maximiser by pro-

12



gressively turning satisfactory alternatives into unsatisfactory ones.

2.2.2 Limited Attention

We next consider the evolution of limited attention (Masatlioglu, Nakajima

and Ozbay, 2012) along a maximal chain in the set of order extensions.2 The

purpose is to exploit the structure of the set of order extensions in order

to provide a description of a process through which a limited-attention DM

progressively expands their attention to consider more and more alternatives,

until at the end of the process they consider every alternative in every menu.

The main idea behind this class of models is that the DM does not pay at-

tention to all alternatives in a menu A, but only a subset of it, called attention

filter. The DM then chooses by selecting the best alternative in the atten-

tion filter according to their rational preferences. For the sake of simplicity,

assume that � is a linear order on X representing the DM’s rational prefer-

ences over alternatives. Define Γ : 2X \ ∅ → 2X \ ∅ as an attention filter with

the two key properties that, for any menu A ⊆ X, (i) Γ(A) ⊆ A is the set of

alternatives the DM pays attention to at menu A and (ii) Γ(A) = Γ(A\{x})
whenever x /∈ Γ(A). That is, the removal of an alternative that is not paid

attention does not alter the attention filter. Then, the DM’s choice behaviour

is a choice with limited attention whenever there exists a linear order � on X

and an attention filter Γ(·) such that, for any menu A ⊆ X, the DM chooses

the �-best alternative from Γ(A).

By a famous result in order theory (Dilworth, 1950), a poset can be

partitioned into a minimum number h of chains and this number equals the

height of the poset. Our suggestion here is to construct attention filters by

intersecting menus with chains of the chain partition. Formally, let PCt denote

a partition into h chains of the tth element of the sequence of preference

relations C in the set of order extensions given by equation 1 and illustrated

in figure 1. Then, for any menu A ⊆ X, define ΓCt (A) := A ∩ P for some

P ∈ PCt such that (i) A ∩ P 6= ∅ and (ii) Γ(·) satisfies the attention filter

property.

ΓCt (A) is the set of alternatives the DM pays attention to at menu A when

2See also Manzini and Mariotti (2014) for a stochastic generalisation of this model.
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their attention filter is constructed in relation to EC
t = (X,�t). Since along

a maximal chain C of the set of order extensions, the partition PCt becomes

coarser and coarser, the DM’s pays attention to more and more alternatives.

To illustrate, assume that X = {x, y, z}. Return to the maximal chain C

of the above section, where �C0 = {}, �C1 = {(y, x)}, �C2 = {(y, x), (y, z)},
and �C3 = {(y, x), (y, z), (z, x)}. Focus on �C1 . Define the DM’s rational

preferences � to be a linear extension of �C1 (for example, �C3 ). A chain

partition of �C1 is PC1 = {{x, y}, {z}}. Since Γ({z}) = {z} for any z ∈ X,

it remains to define an attention filter for the non-singleton menus. Let

Γ({x, y}) = {x, y} ∩ {x, y} = {x, y}, Γ({x, z}) = {x, z} ∩ {z} = {z},
Γ({y, z}) = {y, z}∩{z} = {z}, and Γ(X) = X∩{x, y} = {x, y}. Hence, given

the constructed attention filter Γ(·) and �, if the DM chooses max(Γ(A),�)

for any menu A ⊆ X, then their choice behaviour is a choice with limited

attention.

In summary, the set of order extensions provides a process of evolution

of limited attention, in which the DM progressively expands their attention,

until they consider every alternative in every menu in a way that their choice

becomes rational.

2.2.3 Shortlisting

In the shortlisting literature (Manzini and Mariotti, 2007; Apesteguia and

Ballester, 2013), the DM sequentially applies a finite list of rationales (cri-

teria) according to a fixed ordering to determine their final choice. Let

P0, . . . , PK be a sequence of binary relations. Given a menu A ⊆ X, let

M j
i (A) with i ≤ j denote the setM j

i (A) = max(max(. . .max(max(A,Pi), Pi+1), . . . , Pj−1), Pj).

The DM uses a rational shortlist method whenever there exists a sequence of

asymmetric binary relations P0, . . . , PK such that the DM chooses a unique

alternative contained in MK
0 (A) from any menu A.

Here we explore a rational shortlist method that uses the sequence of

rationales along a maximal in the set of order extensions. Returning to the

choice set X = {x, y, z} and assume that K = 3. Let C be given by the max-

imal chain in the set of order extensions highlighted in figure 1 and defined

in equation 1. That is, each Pi coincides with a particular element of the

maximal chain, i.e., Ci = Pi for i = 0, . . . , 3. Note that M0
0 (X) = {x, y, z},
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M1
1 (X) = M2

2 (X) = {x, z}, and M3
3 (X) = {x}. Moreover, M3

0 (X) = M3
t (X)

for any t = 0, 1, 2. Similarly, M3
0 (A) = M3

t (A) for any t = 0, 1, 2 and any

A ⊆ X. Hence, when the sequence of rationales is given by a maximal chain

in the set of order extensions, a behavioural shortlisting DM could disregard

the first terms of the sequence of rationales and directly apply the maximal

element of the chain (�C3 ).

We also discuss in sections 4.4 and 4.5 choice along maximal chains of the

set of order extensions in the context of two contrasting models of incomplete

preferences, namely Eliaz and Ok (2006) and Gerasimou (2018).

3 The Behavioural Learning Set

3.1 The Framework

Let X = {x1, . . . , xn} be a finite n-element set of alternatives available to

the DM. We call X the choice set. Let ΣX denote the set of all reflexive and

transitive binary relations on X. We call ΣX the set of tastes and interpret it

as the set of preferences that the DM may be endowed with at each learning

stage. We will be precise later about what we mean by learning stage. We

do not impose completeness on the binary relations �∈ ΣX and interpret it

as the DM being indecisive over particular pairs of alternatives in the choice

set.

Below we illustrate an example of an element of ΣX .

Example 3.1 (Paretian Consumer). Let X = {0, 1}3, where each x =

(x1, x2, x3) ∈ X is a binary three-attribute product. Given x, y ∈ X, let �P
denote the Paretian relation over X, i.e., x �P y if and only if xi ≤ yi
for all i. Note that �P is transitive and anti-symmetric, but not complete.

E.g. the consumer is not able to rank 100 and 011.3

Definition 3.1 (Learning Set, Learning Process, Learning Stage). Let T be

a finite natural number, where T ≥ n(n−1)
2

.

3Behavioural transitivity requires that if x � y and y � z, then either the consumer

is indecisive over the pair (x, z) or x � z (Mandler, 2005). Behavioural transitivity is

equivalent to transitivity if and only if preferences are complete. Therefore, in the context

of incomplete preferences behaviourally transitive preference relations do not belong to

ΣX .
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i We call set of learning processes the set ΣX × · · · × ΣX = ΣT+1
X .

ii A sequence L := (�0, · · · ,�T ) ∈ ΣT+1
X is called a learning process.

iii The t-th term of the sequence L is called the t-th learning stage asso-

ciated with the learning process L.

The interpretation is that the DM goes through T + 1 learning opportu-

nities in their life. A learning opportunity could be interpreted as attending

a lecture, being subject to persuasive marketing, being subject to framing,

becoming aware of a social norm, etc. A learning process L describes how

the DM’s preferences evolve while being subject to T + 1 learning opportu-

nities. As the example below illustrates, we consider both the polar cases in

which, on the one extreme, the DM’s preferences change at every learning

opportunity and, on the other extreme, their preferences remain constant

throughout, and all cases in between. The set of learning processes ΣT+1
X

is the set of all learning processes, and the t-th stage of learning process L

refers to the DM’s preferences - often denoted by �Lt - at the t-th learning

opportunity in learning process L.

Example 3.2 (Learning Process). Let X = {x, y, z} and T = 4. For the

purpose of this example, in defining the posets we will change notation by

specifying the direction of preference. Define the following posets: Q := {},
Q′ := {(y ≺ x)}, P ′ := {(x ≺ y)}, Q′′ := {(y ≺ x), (y ≺ z)}, Q′′′ := {(y ≺
x), (y ≺ z), (x ≺ z)}, and P ′′′ := {(y ≺ x), (y ≺ z), (x ∼ z)}.4 Consider the

following learning processes.

1. L̄ = (Q,Q′, Q′′, P ′′′, P ′′′). The DM’s starts by being indecisive and

progressively learns how to compare an extra pair of alternatives at a

time, until at learning stage 3 their preference become complete. Note

that at learning stages 3 and 4 their preferences do not satisfy anti-

symmetry.

2. L̂ = (Q′, Q′′, Q′′′, Q′′′, Q′′′). The DM does not start by being completely

indecisive, as at learning stage 0 they are able to compare a pair of

alternatives.

4Recall that for brevity throughout the paper we omit to specify the reflexive parts of

the preference relations.
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3. L̃ = (Q,P ′, Q′′, Q′′′, Q′′′). At learning stage 1 the DM prefers y to x

and then at learning stage 2 they change their mind by preferring x to

y.

4. L̇ = (Q,Q,Q,Q,Q). The DM’s preferences remain constant throughout

and equal Q.

5. L∗ = (Q,Q′, Q′′, Q′′′, Q′′′). L∗ is similar to L̄, apart from the fact that

the DM’s preferences are anti-symmetric throughout.

We next define the concept of settling preference, i.e. a situation whereby

the DM’s preferences do not change any more, starting from a certain learning

stage onwards within a learning process. The approach we follow in this paper

is to think of a learning process as a finite sequence of preference relations.

Let Nn = {1, . . . , n} the set of the first n natural numbers. In this respect,

suppose that Z is an n-element set (so that Z is non-empty and finite), the

set {zi : i ∈ Nn, i ≥ k} is called the k-th tail of the sequence, and is denoted

tailk(z). We also define the set of m first terms of the sequence as the set,

{zi : i ∈ Nn, i ≤ m}.

Definition 3.2 (Settling Preferences). A learning process L ∈ ΣT+1
X is said

to settle at the tth learning stage whenever t is the smallest index such that

tailt(L) is a constant sequence. The learning process L is said to settle on

�∗ whenever tailt(L) = (�∗, . . . ,�∗).5 6

Note that, when the choice set is finite, every learning process settles at

some learning stage. The interesting questions are to be able to predict (i) at

which learning stage a learning process settles and (ii) what are the features

of the preferences on which a learning process settles.

As discussed above, the paper studies and axiomatises learning on a set

(X,�), where we abstract from the important question of the distinction

between indecisiveness and indifference that have been a subject of many

papers, such as Eliaz and Ok (2006), Qiu and Ong (2017), and Gerasimou

(2018). For this purpose, the following remark is useful.

5Given the finiteness imposed on our framework, the notion of convergence is not a

suitable one, because - by definition - the limit of a learning process L = (�0, . . . ,�T ) ∈
ΣT+1

X is equal to the last term �L
T of learning process L.

6Note that in example 3.2 L̄ settles on P ′′′ at learning stage 3, L̂ settles on Q′′′ at

learning stage 2, L̇ settles on Q at learning stage 0, etc.
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Remark 3.1. Let (Y,�) be a finite preordered set. Then,

i There exists a system of distinct representatives X = {x1, . . . , xn} ⊆
Y , where each xi is a unique element of an indifference class Φi and

Φ1, . . . ,Φn is a partition of Y .

ii The restriction of � to X is an anti-symmetric preorder, that is, a par-

tially ordered set (X,�).

In other terms, when the DM compares two distinct elements xi and

xj from the SDR three possibilities can occur, namely, either xi is strictly

preferred to xj, xj is strictly preferred to xi or xi and xj are incomparable.

The construction of the partially ordered set (X,�) as an SDR is a convenient

way of separating issues of indifference versus indecisiveness in the context

of preorder Y .

We can think of Y being an orchestra comprising three groups: cellists,

violinists, and flutists. The maestro is indifferent between any pair of mu-

sicians that play the same instrument. In other words, groups of cellists,

violinists, and flutists induce a partition of the orchestra Y and any SDR X

of Y precisely consists of one cellist, one violinist, and one flutist. The learn-

ing processes examined in this paper assume that at period 0 the maestro is

indecisive on how to order any pair of musicians who perform on different in-

struments and in each learning episode acquires information on how to order

a new pair of elements from the SDR.

3.2 The Behavioural Axioms of Learning

We now present a list of axioms that impose reasonable restrictions on how

the DM can learn by characterising a subset of the set of learning processes

ΣT+1
X .

Specifically, let L = (�L0 , . . . ,�LT ) be a (T + 1)-sequence of preference

relations on a finite set X. We consider the following behavioural axioms of

learning.

• [A1] (X,�Lt ) is a partially ordered set, for any t = 0, . . . , T .

• [A2] At learning stage 0, |comp(X,�L0 )| = 0.
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• [A3] For any x, y ∈ X, if x ≺Ls−1 y, then x ≺Ls y for all s = 1, . . . , T .

• [A4] If |inc(X,�Lt−1)| = k > 0, then |inc(X,�Lt )| = k − 1 for all t =

1, . . . , T .

From here on, we define the subset L(X) := {L ∈ ΣT+1
X : axioms [A1]−

[A4] hold} as the behavioural learning set.

Axiom [A1] defines the context of bounded rationality in that the prefer-

ence relation is assumed to be anti-symmetric and transitive, but not neces-

sarily complete. Anti-symmetry of (X,�Lt ) arises here because each element

of X = {x1, ..., xn} is a unique representative of one of the n indifference

classes of a superset Y of X. Equivalently, x1, ..., xn is an SDR of a larger

choice set Y .

Axiom [A2] is a normalization axiom: we begin our story at stage 0, where

the DM is completely indecisive. As an example, imagine an 18-year old that

for the first time is entitled to vote for the general elections. Presumably,

such individual has not been interested in politics up to that point in time

and just begins to form an opinion about the candidates.

Axiom [A3] is a dynamic consistency axiom that ensures that the evolu-

tion of learning is not erratic. So if the DM prefers y to x at some learning

stage, they continue to do so at the next learning stage. This axiom captures

durable changes of preferences arising from learning that Bowles (2004: Ch.

3) refers to as the endogeneity of preferences.

Axiom [A4] captures the incentives an indecisive decision maker has for

learning. So if the DM is unable to compare k > 0 pairs of alternatives at

some learning stage, axiom [A4] ensures that at the next learning stage they

are indecisive over k − 1 alternatives7.

We note that the above axioms are logically independent as demonstrated

in example A1 of the appendix of paper. Anticipating on the results below,

we also mention several properties that the axioms imply. Firstly, together

the four axioms allow us, starting from the completely indecisive preference

7For instance, in the consumer search literature purchasers keep searching if the ex-

pected benefit of exploring an additional firm outweighs the search cost (Stahl, 1989).

Similarly, axiom 4 may be thought of as a reduced form, for a decision-maker who en-

gages at every stage of learning in a cost-benefit analysis, where the benefit of learning to

compare an additional pair of alternatives outweighs the cost.
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ordering on X, to construct all the different partial orders on the choice setX.

Thus the learning we obtain from the four axioms is in this sense exhaustive

(Theorem 3.1 below). Secondly, the learning that the four axioms produce

is monotonic in a sense that we shall define in Proposition 3.2 below. That

is, the DM learns in a way as to reduce their indecisiveness steadily in every

period, until their preferences become complete, and from there on time

invariant.

Theorem 3.1. Let M = (E0, E1, . . . , En∗) denote a sequence of preference

relations in the set of order extensions of the antichain E0 = (X,�0), where

n∗ ≤ T . Then, M is a maximal chain of the set of order extensions if and

only if the sequence (E0, E1, . . . , En∗) constitutes the first n∗ + 1 terms of a

learning process L in the behavioural learning set L(X).

Theorem 3.1 suggests that if a DM satisfies the four axioms of learning, a

given learning process L may be described by a sequence of ordered sets and

vice versa any maximal chain in the set ext(X) of order extensions provides

the first n∗ terms of a sequence defining a learning process in L(X). The

various terms of the sequence belong to a poset of posets - that is the set

of order extensions - where the sequence: begins with the antichain E0 (as

minimal element), constructs every subsequent learning stage t as an order

extension of the ordered set of stage t − 1; until they have exhausted all n∗

incomparabilities and work with a complete preference relation for T − n∗

residual periods. That is, theorem 3.1 delivers a story whereby in stages

0 to n∗ the DM behaves like the learners in the opening quotation of the

paper to Bowles (2004) and from then onwards their preferences are not

subject to change for the same reason that one does not argue about the Rocky

Mountains (Stigler and Becker, 1977). We believe that the axiomatization of

this paper is useful in that starting from extreme indecisiveness, the axioms

provide a general process for arriving at a complete, time-invariant, and

transitive preference relation, where most textbook discussions of the theory

of the rational DM begin.

It is clearly the case that by relaxing any combination of the axioms, one

can obtain generalizations of behavior. We discuss below some implications

of changing each separate axiom in turn when we consider the simple case

where the number of learning episodes, T , coincides with n∗.
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We first discuss axiom [A1]. If we consider a broader role for learning

whereby DMs are allowed to rank pairs of alternatives in the choice set as

belonging to the same indifference class, we will need to impose further re-

strictions on the type of preferences we are working with. For instance, we

may want to restrict learning to preferences that are regular in the sense of

Eliaz and Ok (2006) so as to have a criterion that enables us to distinguish

learning that produces a strict order of pairs of alternatives versus learning

about indifference.

Consider next relaxing [A2] to at learning stage 0, |comp(�L0 )| = k ∈
{0, ..., n∗}. The resulting behavioural learning set would be equal to a subset

of ext(X).8 When k = 0, we would be back with Theorem 3.1. In this sense

axiom [A2] adds generality by modelling the initial stages of learning.

Axiom [A3] captures the role of learning as a means shaping endogenous

preference formation in the perspective of Bowles (2004). Consider then the

following variation on axiom [A3]: for any x, y ∈ X, if x ≺Ls−1 y, then (x, y) ∈
comp(X,≺Ls ) for all s = 1, . . . , T . The resulting behavioural learning set

would have for generic element a learning process L that occasionally jumps

from one chain of the set of order extensions to other ones. As such the

learning process L would be obtained by gluing together (i.e., constructing

unions of) subsets of maximal chains of the set of order extensions.

Consider relaxing Axiom [A4] to if |inc(�Lt−1)| = k > 0 then 0 ≤ |inc(�Lt
)| ≤ k for all t = 1, . . . , T . As such, the learning process L is obtained

by having a combination of episodes with no learning, or some learning, or

learning involving more than one additional comparable pair (consider the

case where |inc(�Lt )| = k − 2). The resulting behavioural learning set would

have for generic element a learning process L that is a chain of the set of

order extensions (but not necessarily a maximal chain). As such, at time

T , the DM may then have an incomplete, or possibly complete, preference

relation.9

There are two further results that we discuss in relation to theorem 3.1

8Specifically, the behavioural learning set would be equal to the up-set of �L
0 in the set

of order extensions.
9This variant of axiom [A4] would be relevant to the literature on cognitive load and

decision-making in the context of bounded rationality (Allred, Duffy and Smith, 2016).
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above. We begin with constructing partitions of the set of order extensions.

3.3 Partitions of the Set of Order Extensions

The set of order extensions of an antichain exhibits in fact a lot of structure

that may be related to the way DMs learn.

Let (Z,�) be an ordered set and θ : Z → N be a function such that, if

y is a cover of x, then θ(y) = θ(x) + 1 for all x, y ∈ Z. The function θ is a

rank function. If such a function θ exists, then (Z,�) is said to be a ranked

ordered set.

Let ρ : ext(X) → {0, ...., n∗} be a function counting the number of

elements that are comparable in the extension Et := (X,�t) of E0 = (X,�0).

That is, for any Et ∈ ext(X), we define ρ(Et) := |comp(Et)|.
From Brualdi, Jung and Trotter (1994) and Pouzet et al. (1995), the

following result follows.

Remark 3.2. The ordered set ext(X) is ranked by the function ρ(·).

We define learning in this paper as a process where we begin as totally

indecisive and gradually increase our capacity to compare alternatives until

our preferences are complete. It is useful to be able to construct the set of

order extensions ext(X) in a way that relates to our understanding of learn-

ing. The following result follows straightforwardly from Dilworth (1950)10,

Brualdi, Jung and Trotter (1994), and Theorem 3.1 of this paper.

Proposition 3.1. In the specific case of Theorem 3.1 where T = n(n−1)/2,

such that the behavioural learning set is equal to the set of maximal chains of

ext(X), the stages of learning associated with the learning processes of L(X)

provide a partition of the set of order extensions ext(X) into n(n− 1)/2 + 1

antichains S0, ..., Sn(n−1)/2, where

Si := {E ∈ ext(X) : |comp(E)| = i}

for i = 0, 1, ..., n(n− 1)/2.

10For the sake of precision, the version of Dilworth’s theorem involving the partition of

a poset into antichains is attributed to Leon Mirsky.
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The significance of this proposition is three-fold. Firstly, it provides a

constructive approach to deriving the set of order extensions: we may begin

by constructing all covers of the antichain. This provides the DMs at stage

1 of learning. Next, all successive covers of order relations with one compa-

rability provide DMs at stage 2 of learning etc. This construction provides

a partition of DMs on the basis of the stages of learning. In turn, this con-

struction will be used to suggest different orderings of decisiveness and to

clarify their relation with existing orderings (see proposition 4.1).

Secondly, the resulting decomposition points to an explanation for the

existence of preference heterogeneity of DMs. Specifically, given that the

learning stages provide a partition, we can think of heterogeneity in a pop-

ulation of DMs arising due to heterogeneity within a given stage of learning

and between different stages of learning. A given rank set exhausts all the

possibilities of constructing a poset with a fixed number of comparable pairs

and the union of the rank sets accounts for the variation in the sizes of the

comparability sets.

Thirdly, note that in general antichain partitions of ordered sets would

not be as easily obtained without the rank property of remark 3.2. That

is, the rank property guarantees that all maximal chains of the set of order

extensions have the same length and, therefore, that the stage of learning

the DM is at can be determined independently of the learning process the

DM is choosing to follow.

3.4 Settling Preferences

Because the set of order extensions ext(X) is ranked, all maximal chains

of this set (a poset of posets) have equal length. It is therefore possible to

predict that under the axioms of learning, all learning processes settle (recall

definition 3.2 in section 3.1) on a complete ordering in exactly n∗ + 1 =

n(n− 1)/2 + 1 learning periods.

Under these behavioural axioms, learning is equivalently characterized by

two monotonic sequences, and by preferences evolving from incompleteness,

to settling on a complete preference ordering.

Proposition 3.2. Let L(X) denote the behavioural learning set. If L :=
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(�0, · · · ,�T ) is a learning process in L(X), ht := height(X,�t), wt :=

width(X,�t), and n∗ := n(n − 1)/2 ≤ T , the following three conditions

are equivalent:

i For all t = 1, ..., n∗ the preference relation �t is a cover of �t−1 in the

set of order extensions of the antichain (X,�0) and the n∗-th tail of the

sequence of preference relations {�t} associated with the learning process

L is a constant sequence with generic element the complete preference

relation �=�n∗.

ii The sequence of ordered set heights {ht} associated with the learning pro-

cess L is an increasing bounded sequence, where the n∗-th tail of the se-

quence {ht} is a constant sequence with generic element h = n.

iii The sequence of ordered set widths {wt} associated with the learning pro-

cess L is a decreasing bounded sequence, where the n∗-th tail of the se-

quence {wt} is a constant sequence with generic element w = 1.

This proposition helps to clarify how the axioms of the behavioural learn-

ing set jointly deliver a theory of monotonic learning. The proposition states

that under the axioms of learning (i) the DM preserves prior knowledge (in

terms of how pairs of alternatives in the choice set are ordered) and acquires

the knowledge to order an additional pair of alternatives in each new stage of

learning until their preferences settle on a complete relation in exactly n∗+1

learning episodes. Under point (ii), the above result is equivalently stated

by characterising the sequence of ordered set heights corresponding to the

n∗ + 1 stages of the given learning process. Such a sequence of ordered set

heights is increasing and settles on height n precisely in n∗+1 periods (when

the preferences of the DM become complete). Likewise, under point (iii), the

monotonicity of learning property may be stated in terms of width of the

sequence of posets defining a learning process. Such a sequence is decreasing

and settles on unit width in precisely n∗ + 1 periods.

In addition, the proposition specifies the way in which learning changes

the DMs’ preferences over time. This result is further exploited in the appli-

cation section. Firstly, when we examine decisiveness orderings, one implica-

tion of monotonic learning is that a necessary condition for DM i to be more
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decisive than DM j is that i is at higher learning stage than j. This condi-

tion applies to the decisiveness ordering proposed by Gorno (2018) as well as

the two additional orderings that we discuss in the applications. Secondly,

this result will prove useful when we explore the implications of learning for

violations of alternative versions of the weak axiom of revealed preference as

discussed in Eliaz and Ok (2006). Likewise, the result is used to shed light on

how learning impacts on choice deferral in the context of Gerasimou (2018).

4 Applications

In this section of the paper we consider four applications of the above frame-

work. These include (i) the measurement of (in)decisiveness, (ii) social inter-

actions as a source of learning, (iii) the implications of learning for the axioms

of revealed preference, and (iv) learning and the timing of choice deferrals.

In all four applications the set of order extensions provides a unifying role in

characterising the effects of learning on preferences and choices.

4.1 Measurement of Indecisiveness

It has been emphasized (Danan and Ziegelmeyer, 2006; Cettolin and Riedl,

2015; Qiu and Ong, 2017) that once that the completeness axiom is relaxed, it

is of utmost importance to investigate the extent to which DMs are decisive.

Most experimental work has investigated indecisiveness over lottery choices.

Indecisiveness has broadly been measured by the number of times a subject

defers their decisions (Danan and Ziegelmeyer, 2006) and by the number of

times they have made their choices by use of a random device (Cettolin and

Riedl, 2015; Qiu and Ong, 2017).

From an order-theoretic point of view, Ok (2002) discusses the use of

height and width of the preference relation �Lt as potentially useful mea-

sures of decisiveness. Specifically, under the behavioural learning axioms,

proposition 3.2 informs us that learning is monotonic in that along a learn-

ing process the sequence of poset heights is weakly increasing and likewise the

sequence of poset widths is weakly decreasing. Furthermore, Gorno (2018)

introduces a very natural decisiveness ordering that follows from the struc-
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ture of incomplete preferences. Namely, Gorno (2018) suggests that Ei is less

decisive than Ej if Ej is an order extension of Ei. In this context, theorem

3.1 indicates that along a learning process satisfying the behavioural axioms

of learning each preference relation Et is an order extension of Es and, more

particularly, an order cover of Et−1. In equivalent terms a chain in the set or-

der extensions defines a sequence of increasingly decisive preference relations

in the perspective of Gorno (2018)’s ordering. We note that this approach

delivers what we may call an order-theoretic perspective, in that individual

i is more decisive than individual j if i’s preference ordering is an order ex-

tension of j’s. We choose to relax Gorno (2018)’s order-theoretic criterion of

indecisiveness by exploring a graph-theoretic perspective. The meaning we

attach to Ei being less decisive than Ej in the graph-theoretic perspective is

that if Ei can compare x and y then Ej also knows how to compare x and y.

We furthermore complement the partial orders based on the order-theoretic

and graph-theoretic perspectives by introducing a complete order , i.e., a

measure of decisiveness:

Definition 4.1 (Three Indecisiveness Orderings). Assume that Ei = (X, �i)
and Ej := (X, �j) are some posets in the set of order extensions of the

antichain (X,�0).

• Ei �dext Ej if Ej is an order extension of Ei (Gorno, 2018).

• Ei �dcomp Ej if comp (Ei) ⊆ comp (Ej).

• Ei �drank Ej if ρ (Ej) ≥ ρ (Ei).

In the graph-theoretic perspective, Ei is less decisive than Ej if the com-

parability set of Ei is a subset of the comparability set of Ej. On the other

hand, Ei �drank Ej if the comparability set of Ei is of a smaller magnitude

than that of Ej. The next proposition explores the logical relation between

the above three definitions of decisiveness.

Proposition 4.1 (Relations between the Three Indecisiveness Orderings).

In the set of order extensions of the n-element antichain E0 = (X,�0), the

following implications hold:

Ei �dext Ej =⇒ Ei �dcomp Ej =⇒ Ei �drank Ej
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Therefore, in the design of experiments aimed at exploring decisiveness,

the three orderings discussed above would allow the investigator to detect

finer differences in decisiveness. By this we mean that experimental research

could also elicit decisiveness orders, such as �dext and �dcomp , alongside the

existing measures discussed earlier. Furthermore, looking at several deci-

siveness relations that are logically related (such as the trilogy of orders of

the above proposition) could provide additional testable hypotheses about

decision making.

The distinction between the order-theoretic and graph-theoretic perspec-

tives on decisiveness is also put to good use in the next subsection, where we

explore the possibility of learning through social interactions.

4.2 Learning from Social Interactions

The traditional view of the DM as someone with exogenous and stable pref-

erences has been challenged in the context of the literatures on endogenous

preferences (Bowles, 1998; 2004), norm dynamics (Young, 2015), and exper-

iments on risk taking (Lejarraga and Müller-Trede, 2016). For instance, the

opening quotation in the paper to Bowles (2004) identifies learning as mech-

anism through which preferences are shaped and become endogenous. In

the literature on norm dynamics where individuals interact with their geo-

graphic neighbours, preferences tend to be homogeneous within well defined

neighbourhoods clusters and social networks (Young, 2015). In the context of

experiments on risk taking, Lejarraga and Müller-Trede (2016) find that sub-

jects with differential knowledge benefit from social interactions in that they

learn from one another to make more informed choices in a decision-theoretic

context.

The graph-theoretic and order-theoretic perspectives can provide some

additional insights into how social interactions shape the learning discussed

in this paper over pairs of alternatives in the choice set.

Example 4.1 (Behavioural Learning over a Coffee Discussion). Individual i

at some stage of learning s has a poset Ei
s = (X, �is) and individual j with a

poset Ej
t :=

(
X, �jt

)
get together for coffee, where Ei

s and Ej
t are some posets

in the set of order extensions of the antichain (X,�0) , and x1, x2, y1, y2 ∈ X.
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Assume (x1, x2) ∈ comp (Ei
s) \comp

(
Ej
t

)
while (y1, y2) ∈ comp

(
Ej
t

)
\comp (Ei

s).

Assuming the coffee discussion has brought learning to both individuals, i

is now at stage s+1 of learning and j has moved up to stage t+1 of learning.

Since both individuals satisfy the axioms of learning, and assuming that

before the coffee i preferred x1 to x2 while j preferred y2 to y1, we may

assume that after the coffee discussion, i has learned to compare y1 and y2
and likewise j has learned to compare x1 and x2.

We highlight two possible outcomes from the social interaction: (i) if

we follow the literature on evolutionary norm dynamics, i and j want to

reinforce their conformity, and this mechanism acts to suppress preference

heterogeneity. As such, i will copy j in a way that y1 �is+1 y2 in Ei
s+1.

Likewise j will order x1 and x2 by copying i so that x2 �jt+1 x1 in Ej
t+1;

(ii) we allow i and j to disagree on their acquired preferences between the

new alternatives. That is, we may still assume comp(Ei
s+1) = comp(Ei

s)

∪ {(y1, y2)} and comp(Ej
t+1) = comp(Ej

t ) ∪ {(x1, x2)} without specifying

how the two agents will order the new pair of alternatives in their respective

comparability sets.

The first perspective is order-theoretic in that i replicates the ordering

of y1 and y2 from j’s initial preference relation Ej
t and similarly for j. Like-

wise, the second perspective is graph-theoretic in the sense that the coffee

discussion allows new connections between pairs of alternatives to be made,

without making assumptions about how the two individuals will order the

new pairs of their respective comparability sets.

The coffee discussion also shapes preference formation and your immedi-

ate neighbours shape your preferences as emphasized by Young (2015). We

conclude however by noting that the graph-theoretic perspective does not

suppress preference heterogeneity to the same extent as the order-theoretic

perspective.

4.3 Learning and the Axioms of Revealed Preference

Suppose that - as external analysts - we are not able to observe the learning

stage at which the DM’s choice has been made. The purpose of this section is

to explore some implications of learning for the axioms of revealed preference.

In the classical theory of the consumer, a choice problem involves a subset
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A ⊆ X and there is a choice correspondence c(·) that assigns to the choice

problem a set of maximal elements c(A).

To capture the effect of learning it is useful to generalize the classical

choice problem to the context of an ordered pair (A, f), where A ⊆ X is

the standard choice problem, and f is a frame belonging to a set of frames

(Bernheim and Rangel, 2007; Salant and Rubinstein, 2008). (A, f) now be-

comes an extended choice problem: the frame influences choice as a result of

psychological but also procedural factors.11

Let T denote the set of integers {0, . . . , T}. The frame we have in mind

here will take a particular form. Let F :=
{
f : 2X\{∅} −→ T

}
denote the

set of functions that assign to each choice problem A a unique learning stage

t := f(A). The choice correspondence c(·) now assigns to the extended choice

problem a maximal set c(A, f(A)) := max
(
A,�Lf(A)

)
. What form does the

weak axiom of revealed preference take here in the presence of indecisiveness

and learning? We attempt to complete the discussion in Eliaz and Ok (2006)

as follows:

WARP-EXT For any extended choice problem (A, f) ∈ 2X\{∅} × F
and y ∈ A, if there exists an x ∈ c (A, f(A)) such that y ∈ c (B, f(B)) for

some other extended choice problem (B, f) with x ∈ B, then y ∈ c (A, f(A)).

Note that if there is no learning, f is a constant function and the above

definition specializes to WARP in Eliaz and Ok (2006). We propose to gener-

alise the Weak Axiom of Revealed Non-Inferiority (WARNI) as follows (Eliaz

and Ok, 2006).

WARNI-EXT For any extended choice problem (A, f) ∈ 2X\{∅} × F
and y ∈ A, if for every x ∈ c (A, f(A)) there exists some other extended

choice problem (B, f) with y ∈ c (B, f(B)) and x ∈ B, then y ∈ c (A, f(A)) .

Note also here that if there is no learning, f is a constant function and

the above definition specializes to WARNI in Eliaz and Ok (2006).

11Examples of (A, f) models involve choice with status-quo bias (Masatlioglu and Ok,

2005), choice from lists (Rubinstein and Salant, 2006), market competition with frames

(Piccione and Spiegler, 2012), etc.
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We know that learning changes the preference ordering. On the other

hand, learning is very structured in this paper, and changes in the preferences

of the DM along a learning process are monotonic: every new preference

relation preserves the previous ones, but extends it (in the order-theoretic

sense) until preferences settle on a complete ordering. Because preferences

are not stable, we have to live with violations of WARP and WARNI when

there is learning.

Though we can only state negative results, the following proposition in-

forms about where in the various stages of learning (recall Dilworth (1950)’s

decomposition theorem) WARP-EXT and WARNI-EXT may be violated.

Proposition 4.2 (Proposition 4.3). Consider an extended choice problem

(A, f) ∈ 2X\{∅} × F for a DM with preferences evolving along a learning

process L ∈ L(X),

i c(A, f(A)) satisfies WARP-EXT for any function f ∈ F and any A ∈
2X \ {∅} such that f(A) ≥ n∗.

ii c(A, f(A)) satisfies WARNI-EXT for any function f ∈ F and any A ∈
2X \ {∅} such that (a) f(A) ≥ n∗, or (b) f(A) = t̄ for some t̄ ∈ T .

iii The following two statements are equivalent:

a There are distinct menus A,B ∈ 2X\{∅} and x, y ∈ A ∩ B and a

function f ∈ F with f(A) 6= f(B) and f(A) < n∗.

b There is a learning process L ∈ L(X) and a function f ∈ F such that

c (·, f(.)) violates WARNI-EXT.

Because at n∗ the DM’s preferences are complete, then it follow from

Arrow (1959) that for any f(A) ≥ n∗ the extended choice criterion satisfies

WARP-EXT. Likewise, for a fixed learning stage t̄ ∈ T , it follows from Eliaz

and Ok (2006) that the extended choice correspondence satisfies WARNI-

EXT. Finally, as long as we observe choices at two different learning stages,

it will be possible to observe violations of WARNI-EXT. Example A2 in the

appendix illustrates these points.
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4.4 Learning and Choice Deferral

We owe to the experimental literature on choice behaviour the insight that

DMs manifest their indecisiveness by selecting several maximal elements, but

also by deferring choices (Danan and Ziegelmeyer, 2006; Costa-Gomes et al.,

2016). In this respect it is convenient to follow the maximal dominant choice

approach introduced by Gerasimou (2018), whereby the DM chooses the best

alternative from any menu A ⊆ X, if there exists one, and chooses to defer,

otherwise.12 Formally, let Best(A,�Lt ) := {x ∈ A : y ≺Lt x for all y ∈
A\{x}} denote the singleton set of the best element in menu A according to

�Lt for some learning process L in the behavioural learning set. Accordingly,

for some learning process L ∈ L(X), the choice correspondence takes the

form

c(A, t) :=

{
Best(A,�Lt ) if Best(A,�Lt ) 6= ∅
∅ otherwise.

(2)

for any t ∈ T and any A ⊆ X. Given that indecisiveness steadily de-

creases in the behavioural learning set, it is interesting to explore how choice

deferral evolves with learning.

Proposition 4.3. Let c(A, t) denote the choice correspondence (2) of the

maximal dominant choice procedure. Then, for any nonempty menu A ⊆ X

and some learning process L ∈ L(X),

i c(A, 0) 6= ∅ if and only if |A| = 1.

ii If c(A, t) 6= ∅, then c(A, s) 6= ∅ for any s > t.

iii If c(A, t) = ∅, then there exists s > t such that c(A, s) 6= ∅.

As a consequence of the structure of monotonic learning, proposition 4.3

informs us that (i) at the initial stages of learning the DM defers at all

menus, but the singleton menus; (ii) as soon as a DM stops deferring they

12Recall that the choice correspondence in Eliaz and Ok (2006) selects the set of maximal

elements. When the set of maximal elements has a unique element, both approaches

coincide. However, when there are multiple maximal elements, the Gerasimou (2018)’s

choice rule is to defer the decision to the future.
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will no longer choose to defer thereafter; (iii) for any menu, there is a learning

stage at which the DM switches from choice deferral to best choice; this is a

consequence of the fact that they learn to resolve one extra incomparability

at a time.

Table 2 illustrates the results of proposition 4.3 in an example that as-

sumes the DM to follow the learning process of figure 2. Choice deferral is

highlighted in red and Best(A,�Lt ) is highlighted in green.

5 Conclusions

Using a set of behavioural axioms, this paper has studied how a decision

maker with incomplete preferences over a finite choice set acquires complete

and transitive preferences via the process of learning. We have provided con-

ditions under which each given learning process contains a specific maximal

chain of the set of order-extensions of the preference relation of an indecisive

decision maker (see theorem 3.1). Several applications of the framework were

discussed, including the measurement of indecisiveness, how learning occurs

from social interactions, the implications of learning for axioms of revealed

preference, and for choice deferral.

We next discuss some future research directions. The behavioural axioms

of this paper were chosen to produce a theory of monotonic learning. But

experimental tests may well document more erratic forms of behaviour. De-

cision makers may well want to revise the way they order two elements in

the choice set. This form of preference reversal would of course entail that

maximal chains of the set of order extensions would not provide the required

description of learning processes in the behavioural learning set. In a greater

degree of generality, it may then be needed to work with a graph of preference

relations, where for instance we may allow for cycles of preference reversals.

Another possibility is to consider in the behavioural axioms weaker forms of

transitivity, such as those introduced by Mandler (2005).

As a further extension of the paper, it would be possible to adopt a proba-

bilistic perspective on learning in the context of the indecisive decision maker

of this paper. We can for instance follow Brightwell and Trotter (2002) in

treating the set of order extensions as a probability space, where the decision
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maker has equal probability of adopting each complete preference ordering

at stage 0 of learning. When the decision maker learns that (say) they prefer

x over y, they accordingly update their probability distribution over the re-

maining linear extensions of their current incomplete preference ordering, and

they continue to do so, until their preferences settle on a complete ordering.

Another extension would consist of associating a cost to learning to com-

pare some specific pairs of alternatives. This would enable researchers to de-

rive more predictions as to which learning processes individuals may choose

to follow. This extension may open the door for applications of the framework

in diverse areas, such as political science (Druckman, 2004) and industrial

organization (Spiegler, 2011).
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A Examples and Tables

Example A.1 (Independence of the Axioms). Reconsider the learning pro-

cesses of example 3.3.

1. L̄ violates A1 and satisfies A2-A4.

2. L̂ violates A2 and satisfies A1 and A3-A4.

3. L̃ violates A3 and satisfies A1-A2 and A4.

4. L̇ violates A4 and satisfies A1-A3.

5. L∗ satisfies A1-A4.

Example A.2 (WARP-EXT, WARNI-EXT, and Learning). Assume that

X = {x, y, z} and T = {0, . . . , 3}. Consider learning process L = (≺L0
, . . . ,≺L3 ) ∈ L(X) defined by equation 1 and the shaded maximal chain of

figure 1. The first four rows of table 1 display the DM’s choices at a fixed

learning stage, i.e., when f(A) = t̄ for all A ∈ 2X\∅ and some t̄ ∈ T . The last

row, instead, illustrates the DM’s choices at different learning stages. The

fourth column indicates whether WARP-EXT and WARNI-EXT are satisfied

(green) or violated (red).

Note that although the choices at learning stages 0 and 2 are generated

by the maximisation of a partially ordered set, WARP-EXT is satisfied in

both cases. The reason is that, while we restrict our attention to partially

ordered sets by imposing anti-symmetry, a DM’s choice behaviour satisfying

WARP-EXT is equivalent to the maximisation of a weak order, that allows for

indifference. The antichain �L0 can be interpreted as the DM being indifferent

between all alternatives and poset �L2 as a rational preference whereby the DM

is indifferent between x and z.13

13See Eliaz and Ok (2006) for a discussion on the distinction between indifference and

indecisiveness.
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B Proofs

Proof of Theorem 3.1. Let M = (E0, E1, . . . , En∗) denote a sequence of pref-

erence relations in the set of order extensions of the antichain E0 = (X,�0),

where n∗ ≤ T .

Necessity. Let M denote the set of maximal chains in the set of order

extensions and let M = {E0, . . . , En∗} ∈ M. Construct a sequence M ′ =

(PM ′
0 , . . . , PM ′

T ) of lenght T + 1 as follows. Given M ∈ M, let PM ′
t = Et

for all t = 0, . . . , n∗ and PM ′
t = En∗ for all t > n∗. We note that M is a

subsequence of M ′ and we now show that M ′ satisfies axioms [A1]− [A4] for

every M ∈M. By definition of maximal chain in the set of order extensions,

each element of M ′ is a poset (satisfying A1). Moreover, the minimal element

of M ′ is an antichain (satisfying A2). Given E,F ∈ M ′, F is a cover of E

if and only if F is an order extension of E (satisfying A3) and has an extra

comparability pair relative to E (satisfying A4). Therefore, the sequence

(E0, E1, . . . , En∗) constitutes the first n∗ + 1 terms of a learning process M ′

in the behavioural learning set L(X).

Sufficiency. Assume that the sequence (E0, E1, . . . , En∗) constitutes the

first n∗+ 1 terms of a learning process L = (�L0 , . . . ,�Ln∗) in the behavioural

learning set L(X). We show that the first n∗ + 1 elements of the learning

process L constitute a maximal chain in the set of order extensions. We

argue by induction on the learning stages in the set {0, . . . , n∗}.
Learning stage 0. By [A2], |comp(X,�L0 )| = 0 for all L ∈ L(X), so that

each �L0 =�0 for all L ∈ L(X) and �0 is an n-element antichain. Since every

poset is an order extension of itself, it follows that �0 is an element of the

set of order extensions of itself. Moreover, �0 is the unique minimal element

of the set of order extensions of the antichain.

Learning stage t for some t ∈ {1, . . . , n∗}. By the inductive hypothesis,

�Lt−1 is the t− 1th order extension of the antichain for some t ∈ {1, . . . , n∗}.
Therefore, �Lt−1 is a poset with |comp(X,�Lt−1)| = t− 1. We now show that

�Lt is a tth order extension of the antichain. From axiom [A1], it follows

that (X,�Lt ) is a partially ordered set. By [A4], |comp(X,�Lt )| = t and, by

[A3], if x ≺Lt−1 y, then x ≺Lt y, implying that �Lt is an extension of �Lt−1.
Therefore, �Lt is the tth order extension of the antichain. Hence, �Ln∗ is a

linear order and the first n∗ + 1 elements of L constitute a maximal chain in

the set of order extensions.

Proof of Proposition 3.1. By remark 3.2, ext(X) is ranked by ρ(·). Hence,
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every maximal chain has the same length, which is given by n∗ + 1, i.e.,

the height of ext(X). Hence, by Dilworth (1950), there exists an antichain

partition of ext(X) consisting of exactly n∗ + 1 antichains. The rank sets of

ext(X) provide one such antichain partition.

Proof of Proposition 3.2. From Theorem 3.1, M is a maximal chain of the set

of order extensions if and only if the sequence (E0, E1, . . . , En∗) constitutes

the first n∗ + 1 terms of a learning process L in the behavioural learning set

L(X), and any linear order relation EL = (X,�n∗) has height n.

(i =⇒ ii). Assume that for all t = 1, ..., n∗ the preference relation �t is

a cover of �t−1 in the set of order extensions ext(X) and that �t equals �λ
for all t ≥ n∗. Because �λ is a linear order, height(X,�λ) = n and hn∗ = n.

From corollary 2.2 in Brualdi, Jung and Trotter (1994), the sequence of poset

heights {ht} is monotonically increasing. Clearly, the upper bound of this

sequence is equal to n in the context of the n-element set X. Therefore, we

have ht = n for all t ≥ n∗.

(ii =⇒ iii). Assume that the sequence of ordered set heights {ht} asso-

ciated with the learning process L is an increasing bounded sequence where

ht = n for all t ≥ n∗. Because hn∗ = n, the associated poset En∗ = (X,�n∗)
is a linear order, and wn∗ = 1. From corollary 2.2 in Brualdi, Jung and Trot-

ter (1994), the sequence of poset widths {wt} is monotonically decreasing.

Clearly, the lower bound of this sequence is equal to 1. Therefore, we have

wt = 1 for all t ≥ n∗, as required.

(iii =⇒ i). Assume that the sequence of ordered set widths {wt} asso-

ciated with the learning process L is a decreasing bounded sequence, where

wt = 1 for all t ≥ n∗. Then, from theorem 3.1 each poset Et+1 = (X,�t+1)

is an order cover of Et = (X,�t), and for all t ≥ n∗ the relation �t must

be a linear order. Since the only order extension of a linear order must be

the same linear order, it follows therefore that �t=�n∗ for all t ≥ n∗, as

required.

Proof of Proposition 4.1. Let Ej be an order extension of Ei. Then, by def-

inition, comp (Ei) ⊆ comp (Ej). Hence, it follows that Ei �dcomp Ej. There-

fore, it is the case that �dext=⇒�dcomp .

We next prove that Ei �dcomp Ej =⇒ Ei �drank Ej. Since the set of

order extensions is ranked by the cardinality of comparability sets, Ei �dcomp

Ej ⇐⇒ comp (Ei) ⊆ comp (Ej) =⇒ ρ (Ei) ≤ ρ (Ej) ⇐⇒ Ei �drank Ej. We
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therefore conclude that Ei �dext Ej =⇒ Ei �dcomp Ej =⇒ Ei �drank Ej in the

set of order extensions.

Proof of Proposition 4.2. Part (i): by proposition 3.2, learning process L

settles on a linear order at learning stage n∗. By Arrow (1959), c(A, f(A))

satisfies WARP-EXT for any function f ∈ F and any A ∈ 2X \{∅} such that

f(A) ≥ n∗.

Part (ii): by part (i), c(A, f(A)) satisfies WARP-EXT for any function

f ∈ F and any A ∈ 2X \ {∅} such that f(A) ≥ n∗. Since WARP-EXT

implies WARNI-EXT, then WARNI-EXT holds too. Next, by axiom A1,

each (X,�Lt ) is a partially ordered set. By the second part of theorem 2

in Eliaz and Ok (2006), c(A, f(A)) satisfies WARNI-EXT for any function

f ∈ F and any A ∈ 2X \ {∅} such that f(A) = t̄ for some t̄ ∈ T .

Part (iii): suppose first that there exists A,B ∈ 2X \ ∅ such that x, y ∈
A ∩ B and n∗ > f(A) 6= f(B). Assume that f(A) = f(B) − 1 and suppose

that f(C) ∈ {f(A), f(B)} for all C ∈ 2X \ {∅, A,B}. Construct a learning

process L ∈ L(X) with the following features: x||Lf(A)y, x and y are �Lf(A)-
maximal in X, and y ≺Lf(B) x. Since �Lf(B) is a cover of �Lf(A) in the set

of order extensions, then �Lf(B) and �Lf(A) differ only in the way the rank

x and y and are otherwise identical. Then, {x, y} ⊆ c(A, f(A)). Similarly,

x ∈ c(B, f(B)) and y /∈ c(B, f(B)). We distinguish two cases.

Case (1): x is the only �Lf(B)-maximal alternative in B. Hence, {x} =

c(B, f(B)). Then, a violation of WARNI-EXT is immediately obtained, as

y should be chosen from B as well.

Case (2): x is not the only �Lf(B)-maximal alternative in B. Let z be

�Lf(B)-maximal alternative in B. Hence, z ∈ c(B, f(B)). Moreover, given

that x is �Lf(A)-maximal in X, then so is z. This implies that z||Lf(A)y and

z||Lf(B)y, as �Lf(B) and �Lf(A) differ only in the way the rank x and y. There-

fore, c({z, y}, f(A)) = c({z, y}, f(B)) = {z, y}. However, this implies that

WARNI-EXT is violated, as y should be chosen from B as well, which is the

desired result.

In the other direction, we prove the contrapositive. Suppose that there

do not exist A,B ∈ 2X \ ∅ such that x, y ∈ A ∩ B and n∗ > f(A) 6= f(B).

We now show that it cannot be the case that f(A) 6= f(B) for some distinct

non-singleton menus A,B ∈ 2X \ ∅. Assume, for instance, that f(X) = t̃ for

some t̃ ∈ T . However, this leads immediately to a contradiction, as since

A,B ⊆ X, then it must be that f(A) = f(B) = f(X) = t̃. Hence, f(A) = t̃
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for all non-singleton menus A ∈ 2X \ ∅ and some t̃ ∈ T . Since choices

from singleton menus are the same across learning stages, then, by part (ii),

c(·, f(·)) satisfies WARNI-EXT, as desired.

Proof of Proposition 4.3. Let c(A, t) denote the choice correspondence (2) of

the maximal dominant choice procedure.

(i). Suppose that c(A, 0) 6= ∅. Since�L0 is an antichain, thenBest({x},�L0
) = {x} for any x ∈ X and Best(A,�L0 ) = ∅ for any A ∈ 2X \ ∅ such that

|A| > 1. Hence, c(A, 0) 6= ∅ implies |A| = 1. In the other direction, the result

immediately follows from the fact that Best({x},�L0 ) = {x} for any x ∈ X.

(ii). Assume that c(A, t) 6= ∅. Note that, whenever c(A, t) 6= ∅, |c(A, t)| =
1, because each (X,�Lt ) is a poset. Hence, assume that {x} = Best(A,�Lt ).

This implies that the restriction of �Lt to A is a join semi-lattice with unique

best element x. By axiom [A3], �Ls with s > t is an order extension of �Lt .

Hence, the restriction of �Ls to A is also a join semilattice with unique best

element x and the added comparabilities rank alternatives that are dominated

by x. Therefore, {x} = Best(A,�Ls ) 6= ∅, as desired.

(iii). Assume that c(A, t) = ∅. Hence, the restriction of �Lt to A is

not a join semi-lattice. We now show that s = n∗ serves the purpose. By

proposition 3.2, L settles on a linear order at learning stage n∗. Hence,

the restriction of �Ln∗ to A is also a linear order and, in particular, a join

semilattice. Hence, Best(A,�Ln∗) 6= ∅. This implies that c(A, s) 6= ∅ when

s = n∗ > t, as desired.
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