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Abstract

We consider manipulation of collective decision making rules in a frame-

work where voters not only rank candidates but also evaluate them as “ac-

ceptable”or “unacceptable”. In this richer informational setting, we adopt

a new notion of strategy-proofness, called evaluationwise strategy-proofness,

where incentives of manipulation exist if and only if a voter can replace an

outcome which he finds unacceptable with an acceptable one. Evaluation-

wise strategy-proofness is weaker than strategy-proofness. However, we es-

tablish the prevalence of a logical incompatibility between evaluationwise

strategy-proofness, anonymity and efficiency. On the other hand, we show

possibility results when either anonymity or efficiency is weakened.
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1 Introduction

Since Gibbard (1973) and Satterthwaite (1975) who establish that every non-dictatorial

and surjective social choice function defined over the full domain of preference pro-

files is manipulable, we observe the growth of a literature which investigates the

effect of weakening these conditions which are logically incompatible. In fact, the

Gibbard-Satterthwaite impossibility turns out to be quite robust when restricted do-

mains are assumed, or multi-valued/probabilistic social choice rules are allowed.1

As another line of research, we see attempts to weaken strategy-proofness in

some direction of interest. Campbell and Kelly (2009) define “gains from manip-

ulation” and assume that voters are reluctant to manipulate unless the reward of

lying is “sufficiently big”.2 Reffgen (2011) adopts a similar approach and consid-

ers manipulations where the manipulating voter can obtain his best or second best

alternative. Sato (2013) restricts options of misrepresentation by considering only

preferences “adjacent” to the true one, hence ruling out “big lies”. None of these

weakenings of strategy-proofness allow an escape from the Gibbard-Satterthwaite

impossibility. As a recent and strong result in the same spirit, Muto and Sato (2016)

define a condition that is much weaker than strategy-proofness, and they show that

the condition is sufficient for the impossibility. In brief, the current state-of-the-

art gives little hope to find a plausible weakening of strategy-proofness that would

overcome an impossibility of the Gibbard-Satterthwaite type, as long as one is

confined to the Arrovian framework of preference aggregation.

We carry the analysis into an informationally richer setting, called by Brams

and Sanver (2009), the “preference-approval” framework, where voters not only

1For example, see Barberà, Dutta, and Sen (2001), Benoı̂t (2002), and Pramanik (2015) among

many others.
2Their analysis assumes a finite number of alternatives and strict individual preferences where

gains from manipulation are measured by the number of ranks the manipulating voter can rise in his

(true) preference.
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rank alternatives but also evaluate them as acceptable (approved) or unacceptable

(disapproved). By making use of this richer setting, we postulate that manipula-

tion occurs if and only if the manipulation leads to a switch from an unacceptable

outcome to an acceptable one, i.e., a gain from manipulation is “big”. This def-

inition renders manipulation harder than its usual understanding where obtaining

any higher ranked outcome is a sufficient incentive for manipulation. As a result,

non-manipulability in our sense leads to a weaker version of strategy-proofness,

which we call evaluationwise strategy-proofness.3

For example, consider an election. Voters often classify the candidates as el-

igible or ineligible depending on what they attach importance. If a voter thinks

that racial or religious diversity is critical, she will consider those candidates who

support such diversity as eligible, and the rest ineligible. Moreover, it might be

arguable that a voter cares manipulating the outcome if and only if he can change

the winner from an ineligible candidate to an eligible one. Of course, the extent

to which such an argument reflects behavioral reality is a matter of experimental

research. Nevertheless, we see it as a probable description of voter behavior and

see evaluationwise strategy-proofness as a concept that is well-worth being inves-

tigated.

We first show, by Corollary 1 to Theorem 1, that the Gibbard–Satterthwaite

impossibility for strategy-proofness covers the preference-approval framework as

well. Moreover, Theorem 1 establishes that the conjunction of evaluationwise

strategy-proofness with “approval invariance”, i.e., a rule must ignore evaluations,

is equivalent to strategy-proofness in the Gibbard–Satterthwaite sense. Thus, on

a domain of preferences on which the Gibbard-Satterthwaite impossibility holds,

3This idea is in the spirit of Campbell and Kelly (2009) who argue (in p.350) that “if a rule allows

only small gains from manipulation, we may be persuaded that the cost to the individual of gathering

enough information about the preferences of others to ensure that manipulation is advantageous will

not yield a gain once those costs are factored in.”
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evaluationwise strategy-proof rules which are non-dictatorial and surjective, if any,

are among those which are not approval invariant.

Nevertheless, even when we dispense with approval-invariance and benefit

from the richness of extended inputs to conceive social choice rules undefined in

the ranking aggregation model, a Gibbard–Satterthwaite type of impossibility pre-

vails: Theorem 2 announces the logical incompatibility between efficiency, evalua-

tionwise strategy-proofness, and anonymity of a social choice function when there

is an even number of voters. However, this result does not preclude the existence of

efficient and evaluationwise strategy-proof social choice functions: Theorem 3 es-

tablishes the existence of a social choice function which is evaluationwise strategy-

proof, efficient and almost anonymous; in a similar vein, Theorem 4 shows that

when efficiency is replaced by a weaker unanimity condition, the tension between

anonymity and evaluationwise strategy-proofness vanishes. Hence, evaluationwise

strategy-proofness is a weakening of strategy proofness that can serve as a criterion

to define a degree of manipulability capable to differentiate among non-dictatorial

social choice functions within the preference-approval framework.

We wish to note that our framework is part of a growing literature in social

choice theory where individuals are assumed to evaluate alternatives through a

common language and the collective decision is seen as an aggregation of evalua-

tions, which are possibly combined with rankings that form the basis of traditional

social choice theory. Among the social choice rules that use evaluations as in-

puts, Approval Voting (AV) is perhaps the most studied. The seminal analysis of

AV by Brams and Fishburn (1978, 2007) predates the formal modeling of evalua-

tions as inputs of the collective choice model. As a result, there has been a period

where discussions on AV reflected difficulties of expressing evaluations within the

framework of ranking aggregations.4 This incompatibility is handled by Brams and

4Among these exchanges, one can non-exhaustively cite Niemi (1984, 1985), Brams and Fishburn

(1985), Saari and Newnhizen (1988a,b), and Brams, Fishburn, and Merill (1988a,b). See Laslier and
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Sanver (2006) who revisit Approval Voting in the preference-approval framework

which is one of the first models that explicitly combines rankings with evaluations

and which forms the framework of our analysis.

AV is restricted to binary evaluations, i.e., admits that a voter conceives each

alternative as either “approved” or “disapproved”. However, there are social choice

rules that enrich the inputs by allowing voters to express their evaluations in more

than two categories. Among these, one can cite Evaluative Voting analyzed by

Hillinger (2005); the threshold aggregation of three graded rankings proposed by

Aleskerov, Yakuba, and Yuzbashev (2007) and Range Voting by Smith (2000).

Balinski and Laraki (2011) propose a general theory of evaluation aggregation

and advocate that it is evaluations which must be aggregated and not rankings.

Nevertheless, as Brams and Sanver (2009) indicate, there is a literature that takes

a compromising direction by using a combination of rankings and evaluations as

the input of the collective choice problem.5 As a matter of fact, evaluationwise

strategy-proofness cannot be appropriately formulated unless a model that com-

bines rankings and evaluations is considered. It is worth noting that regarding the

analysis of strategy-proofness, the preference-approval framework subsumes the

standard Arrovian setting (which omits evaluations) as well as the Balinski and

Laraki (2011) setting (which omits rankings).6

Section 2 of our paper introduces the preference-approval framework and the

other notions including evaluationwise strategy-proofness. Our results are pre-

sented in Section 3, and finally Section 4 makes some concluding remarks.

Sanver (2010) for an account of the developments on AV.
5As pointed out by Sanver (2010), this combination extends the ordinal ranking aggregation

framework by introducing cardinal elements into individual preferences.
6To be sure, Balinski and Laraki (2011) allow more than two evaluations but the notion of evalu-

ationwise strategy-proofness is naturally extendable to any number of evaluations.
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2 Basic notions and the setting

2.1 Preference-approval framework

We begin with the basic terminology for a collective decision making problem.

Consider a set of voters N = {1, . . . , n} with n ≥ 2 and a set of candidates X

with |X| = m where m ≥ 3.7 Let L be the set of all linear orders on X .8 Let

2X be the set of all subsets of X . Voter i’s preference over candidates is a linear

order Ri ∈ L. For each k ∈ {1, . . . ,m}, let rk(Ri) be the kth ranked alternative

according to Ri ∈ L. The strict part of Ri is Pi. We presume that each voter

partitions the set of candidates into two subsets: a set of acceptable candidates,

Ai ⊆ X , and a set of unacceptable candidates, Ui = X \ Ai. We also assume a

consistency condition: if y ∈ X is acceptable, all candidates preferred to y should

be acceptable as well. Formally, a preference-approval of voter i ∈ N is a pair

pi = (Ri, Ai) ∈ L × 2X such that

for each x, y ∈ X ,
[
(x Ri y and y ∈ Ai) ⇒ x ∈ Ai

]
.

Let Π be the set of all preference-approvals.

We allow domain restrictions by considering a set of admissible preferences,

D ⊆ L, and we write ΠD = {(Ri, Ai) ∈ Π | Ri ∈ D} for the set of admissible

preference-approvals. Note that Π = ΠL. Note also that we do not impose any

restrictions over the acceptable set of candidates except the consistency condition

in the definition of a preference-approval. Thus, if Ri ∈ L is admissible, then for

each Ai ∈ 2X satisfying the consistency condition, (Ri, Ai) is admissible. As a

result, for each Ri ∈ L, there exist m+ 1 possible preference-approvals.

7For each set S, |S| denotes its cardinality.
8A binary relation B is a subset of X ×X and we write x B y for (x, y) ∈ B. A binary relation

B is complete if for each x, y ∈ X , x B y or y B x, transitive if for each x, y, z ∈ X , x B y and

y B z imply x B z, antisymmetric if for each x, y ∈ X , x B y and y B x imply x = y. Finally, a

binary relation is a linear order if it is complete, transitive, and antisymmetric.
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Πn
D is the set of all admissible profiles of preference-approvals, and whose typi-

cal member is denoted by p = (p1, p2, . . . , pn), where pi stands for the preference-

approval of voter i ∈ N . We write (p′i,p−i) to denote that voter i’s preference-

approval is p′i and the rest of the other voters’ is p−i.

2.2 Collective decision rules and axioms

For each D ⊆ L, a rule f on Πn
D is a single-valued function from the set of

admissible profiles of preference-approvals, Πn
D, into the set of candidates, X . So,

given a profile, a rule aggregates two pieces of information, orders and binary

evaluations, into a social outcome. This outcome may be acceptable for some

voters and unacceptable for others.

When a rule depends only on ranking information (R1, R2, . . . , Rn) in the

sense of the following approval independence axiom, that rule can be defined in

the standard Arrovian model. On the other hand, rules of our framework that are

not approval invariant cannot be expressed in the standard model. Thus, our model

is an extension of the Arrovian model.

• Approval Invariance: For each p,p′ ∈ Πn
D such that Ri = R′

i for each

i ∈ N , f(p) = f(p′).

We define efficiency as in the Arrovian model. We say that x ∈ X is efficient

if there is no y ∈ X such that y Pi x for each i ∈ N .

• Efficiency: For each p ∈ Πn
D, f(p) is an efficient candidate.

The following axiom, which is weaker than efficiency, states that when there is

a unanimous agreement on the best candidate, a rule should respect this agreement.

• Unanimity: For each x ∈ X and each p ∈ Πn
D such that r1(Ri) = x for

each i ∈ N , f(p) = x.
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Symmetric treatment of the voters is ensured by defining the standard anonymity

axiom in our framework.

• Anonymity: For each p ∈ Πn
D and each permutation π of N , f(p) = f(p′),

where p′i = pπ−1(i) for each i ∈ N .

A group of voters N ′ ⊆ N is decisive for x ∈ X under a rule f on Πn
D if for

each profile p ∈ Πn
D such that Ai = {x} for each i ∈ N ′, f(p) = x. We say

that a group N ′ is decisive if it is decisive for each candidate, and a voter i ∈ N is

decisive if {i} is decisive. Under a unanimous rule, N is decisive.

A rule f on Πn
D is dictatorial if there is i ∈ N such that f(p) = r1(Ri) for

each p ∈ Πn
D. Such i is called a dictator. By definition, if i ∈ N is a dictator, then

he is decisive. Therefore, if there is no decisive voter, the rule is non-dictatorial.

2.3 Evaluationwise strategy-proofness

We begin with a restatement of the strategy-proofness axiom for the preference-

approval domain.

A rule on Πn
D is manipulable if there are p ∈ Πn

D, i ∈ N and p′i ∈ ΠD such

that

f(p′i,p−i) Pi f(p).

A rule on Πn
D is strategy-proof if it is not manipulable.

In the formulation of strategy-proofness, each voter has an incentive to misrep-

resent his preference-approval if and only if a more preferred candidate is chosen

by this misrepresentation. On the other hand, we also postulate that a voter has an

incentive to misrepresent his preference-approval if and only if he can change an

unacceptable outcome to an acceptable one. Thus, just achieving a higher ranked

candidate is not a sufficient incentive for misrepresentation.
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A rule on Πn
D is evaluationwise manipulable if there are p ∈ Πn

D, i ∈ N and

p′i ∈ ΠD such that

f(p) ∈ Ui and f(p′i,p−i) ∈ Ai.

A rule on Πn
D is evaluationwise strategy-proof if it is not evaluationwise manip-

ulable.

Although strategy-proofness clearly implies evaluationwise strategy-proofness,

it is not that clear whether strategy-proofness exhibits a Gibbard–Satterthwaite type

of impossibility in our framework where voters have more strategic tools of ma-

nipulation (i.e., rankings and approvals) which renders manipulation easier but also

due to richer information, there are more conceivable rules than the standard Arro-

vian framework. The following theorem shows that the impact of additional ma-

nipulation tools is dominant and the Gibbard–Satterthwaite impossibility prevails

in our framework.

Theorem 1

Let D ⊆ L, and f be a rule on Πn
D. Then, f is strategy-proof if and only if it is

evaluationwise strategy-proof and approval invariant.

Proof. Strategy-proofness ⇒ evaluationwise strategy-proofness:

Assume that f satisfies strategy-proofness. Let p ∈ Πn
D, i ∈ N , and p′i ∈ ΠD.

Assume f(p) ∈ Ui. We want to show that f(p′i,p−i) ̸∈ Ai. Suppose f(p′i,p−i) ∈

Ai. By the definition of a preference-approval, f(p′i,p−i) Pi f(p). This is a con-

tradiction to strategy-proofness.

Strategy-proofness ⇒ approval invariance:

Assume that f satisfies strategy-proofness. Let p,p′ ∈ Πn
D be such that Ri =

R′
i for each i ∈ N . At p, let voter 1 change his preference-approval from p1 to

p′1. Then, the profile of preference-approvals changes from p to (p′1,p−1). We

want to show f(p) = f(p′1,p−1). Suppose f(p) ̸= f(p′1,p−1). Then, either
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f(p) P1 f(p
′
1,p−1) or f(p′1,p−1) P1 f(p). In the former case, since R1 = R′

1, we

have f(p) P ′
1 f(p

′
1,p−1). This is a contradiction to strategy-proofness. The latter

case is also a contradiction to strategy-proofness. Thus, f(p) = f(p′1,p−1). At

(p′1,p−1), let voter 2 change his preference-approval from p2 to p′2. By the same

arguments, the social choice remains the same. In this way, after all voters change

their preference-approvals from those in p to those in p′, the social choice does not

change. Thus, f(p) = f(p′).

Evaluationwise strategy-proofness and approval invariance ⇒ strategy-proofness:

Assume that f satisfies evaluationwise strategy-proofness and approval invari-

ance. Let p ∈ Πn
D, i ∈ N , and p′i ∈ ΠD. Let p∗i = (R∗

i , A
∗
i ) ∈ ΠD be such that

R∗
i = Ri and f(p∗i ,p−i) is the best alternative in U∗

i according to R∗
i . By evalua-

tionwise strategy-proofness, f(p′i,p−i) ∈ U∗
i . Since f(p∗i ,p−i) is the best alterna-

tive in U∗
i according to R∗

i , we have f(p∗i ,p−i) R
∗
i f(p

′
i,p−i). Since R∗

i = Ri and

f is approval-invariant, f(p∗i ,p−i) = f(p). Thus, we have f(p) Ri f(p
′
i,p−i).

This implies that f is strategy-proof. ■

This result has two important implications;

First, it shows that strategy-proofness in the preference-approval model and

that in the standard Arrovian model are equivalent. To clarify the meaning of this

equivalence, we introduce additional notations. Given D ⊆ L, let P be the set of all

rule on Πn
D in the preference-approval model, and let A be the set of all rules on Dn

in the standard Arrovian model, i.e., each F ∈ A is such that F (R) ∈ X for each

R = (R1, . . . , Rn) ∈ Dn. Moreover, let P∗ ⊂ P be the set of all strategy-proof

rules on Πn
D, and A∗ ⊂ A be the set of all strategy-proof rules on Dn. Let φ be a

function from A to P such that for each F ∈ A, f ≡ φ(F ) ∈ P is the (approval

invariant) equivalent of F in P . Formally, for each p = (p1, . . . , pn) ∈ Πn
D,

f(p) = F (R), where pi = (Ri, Ai) for each i ∈ N and R = (R1, . . . , Rn).
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Similarly, let φ∗ be a function from A∗ to P∗ such that for each F ∈ A∗, φ∗(F ) ∈

P is the (approval invariant) equivalent of F . (Since strategy-proofness of F ∈ A∗

implies strategy-proofness of its (approval invariant) equivalent, the value of φ∗ is

in P∗.)

Since P contains rules that are not approval invariant, φ is not a bijection from

A to P . However, Theorem 1 implies that φ∗ is a bijection from A∗ to P∗. In this

sense, strategy-proofness is equivalent in the two frameworks.

Corollary 1

φ∗ is a bijection from A∗ to P∗.

Proof. It is clear that φ∗ is an injection. We show that φ∗ is onto. Let f ∈ P∗.

As Theorem 1 shows, f is approval invariant. Since f depends only on ranking

information, we can define F ∈ A as follows: for each R ∈ Dn, F (R) = f(p),

where p ∈ Πn
D is such that pi = (Ri, Ai) for each i ∈ N . It is clear that φ(F ) =

f . Thus, it suffices to show F ∈ A∗. Since strategy-proofness depends only

on ranking information and f is strategy-proof, F is also strategy-proof. Thus,

F ∈ A∗. ■

Second, on each D ⊆ L such that strategy-proofness and efficiency imply

dictatorship in the Arrovian model, rules on Πn
D (i.e., in the preference-approval

model) that are evaluationwise strategy-proof, efficient and non-dictatorial exist

only in the family of rules that are sensitive to the binary evaluation component.

Corollary 2

Let D ⊆ L. Assume that each rule on Dn satisfying strategy-proofness and effi-

ciency is dictatorial. Then, each non-dictatorial rule on Πn
D satisfying evaluation-

wise strategy-proofness and efficiency is not approval invariant.

Proof. Suppose that we find an approval invariant rule f on Πn
D that is evalua-

tionwise strategy-proof, efficient and non-dictatorial. By Theorem 1, f is strategy-

proof. Since f is approval invariant, it can be considered as a rule in the Arrovian
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model (Corollary 1). As a rule in the Arrovian model, it inherits each property

based only on ranking information from a rule in the preference-approval model.

Then, f is a rule in the Arrovian model and it is strategy-proof, efficient, and non-

dictatorial. However, this is a contradiction to the assumption that there is no such

a rule on Dn. ■

2.4 Relationship to strategy-proofness in dichotomous domains

In Section 2.3, we clarified the relationship between evaluationwise strategy-proofness

in the preference-approval framework and strategy-proofness in the standard Arro-

vian framework. In this section, we clarify the relationship between evaluationwise

strategy-proofness in the preference-approval framework and strategy-proofness

over (Arrovian) dichotomous domains. Specifically, we will show that the analysis

on dichotomous domains can be subsumed in the preference-approval framework.

A preference is dichotomous if it has at most two indifference classes. Di-

chotomous preferences are weak orders,9 so ties are allowed. When there are ex-

actly two indifference classes, we interpret the upper indifference class as the set of

“good” candidates and the lower indifference class as the set of “bad” ones. When

there is only one indifference class, we choose the convention that all candidates

are “good”. Let D̃ be the set of all dichotomous preferences. A rule F on D̃n is a

function from D̃n to X . The following is a key property in expressing rules in the

preference-approval framework and rules on the dichotomous domain in terms of

each other.

• Reshuffling Invariance: For each p,p′ ∈ Πn
D such that Ai = A′

i for each

i ∈ N , f(p) = f(p′).10

9A binary relation is a weak order if it is complete and transitive.
10Barberà, Berga, and Moreno (2012) consider a condition called “reshuffling invariance” in the

standard framework where only rankings are inputs to social choice rules. Their “reshuffling” is

within the upper and the lower contour sets of the socially chosen alternative, while ours is within
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When a rule in the approval-preference framework is reshuffling invariant, it does

not depend on how the candidates are ranked within approved ones and disap-

proved ones.

We say that a dichotomous preference Qi ∈ D̃ with two indifference classes

is derived from a preference-approval pi ∈ Π if for each x, y ∈ X , x ∈ Ai and

y ∈ Ui imply x Qi y and not y Qi x, i.e., x is a “good” candidate and y is a “bad”

candidate according to Qi. When Qi ∈ D̃ consists of a single indifference class,

it is derived from a preference-approval pi = (Ri, Ai) such that x ∈ Ai for each

x ∈ X .11 Note that for each Qi ∈ D̃, there is always a preference-approval pi ∈ Π

such that Qi is derived from pi. Also, given a profile of dichotomous preferences

Q = (Q1, . . . , Qn) ∈ D̃n, if a rule f on Πn is reshuffling invariant, we have

f(p) = f(p′) for each p,p′ ∈ Πn such that each Qi is derived from both pi and

p′i.

For each rule F on the dichotomous domain D̃n, we can define the (reshuffling

invariant) equivalent f of F in the preference-approval framework as follows: for

each p ∈ Πn, let f(p) = F (Q), where each Qi in Q = (Q1, . . . , Qn) is derived

from pi.12 Note that this f is reshuffling invariant. Conversely, each reshuffling

invariant rule f on Πn can be transformed to the equivalent rule F on the dichoto-

mous domain in the following way: for each Q ∈ D̃n, let F (Q) = f(p), where

the approved and the disapproved alternatives.
11We could say that Qi is derived from pi = (Ri, Ai) such that x ∈ Ui for each x ∈ X . Our

choice reflects the convention that all candidates are “good” when there is only a single indifference

class.
12Only in this definition, we disregard the convention that all candidates are “good” when there

is one single indifference class, and we assume that Qi with only one indifference class is derived

from also a preference-approval pi such that x ∈ Ui for each x ∈ X . Otherwise, we cannot define

f(p) when some pi in p is such that x ∈ Ui for each x ∈ X . As a result of this deviation from the

convention, given p−i ∈ Πn−1, f(pi,p−i) = f(p′i,p−i) for each pi = (Ri, Ai) and p′i = (R′
i, A

′
i)

such that Ai = X and A′
i = ∅.
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each pi in p ∈ Πn is such that Qi is derived from pi.13 In this sense, although we

rule out ties in preferences, the preference-approval model is an extension of the

model of the dichotomous domain.

We wish to note that strategy-proofness of F on D̃n and evaluationwise strategy-

proofness of its (reshuffling invariant) equivalent f on Πn are equivalent: if we

have a strategy-proof rule F on the dichotomous domain D̃n, then its (reshuffling

invariant) equivalent f is evaluationwise strategy-proof. To see this, let p ∈ Πn,

i ∈ N , and p′i ∈ Π. Let Q ∈ D̃n be such that for each j ∈ N , Qj is derived

from pj , and let Q′
i be such that it is derived from p′i. By strategy-proofness of F ,

we have F (Q) Qi F (Q′
i,Q−i). Since f is the (reshuffling invariant) equivalent

of F , f(p) = F (Q) and f(p′i,p−i) = F (Q′
i,Q−i). When Qi has two indiffer-

ence classes, there are three cases to consider: according to Qi, (1) both F (Q)

and F (Q′
i,Q−i) are “good”, (2) both of them are “bad”, and (3) F (Q) is “good”

and F (Q′
i,Q−i) is “bad”. In the first case, since Qi is derived from pi, both f(p)

and f(p′i,p−i) belong to Ai. In the second case, both of them belong to Ui. In

the third case, we have f(p) ∈ Ai and f(p′i,p−i) ∈ Ui. In each case, f is not

evaluationwise manipulable, i.e., f is evaluationwise strategy-proof. When Qi has

only one indifference class, either Ai = X or Ai = ∅. Thus, f is evaluationwise

strategy-proof also in this case. Conversely, we can see in a similar manner that

if we have a reshuffling invariant and evaluationwise strategy-proof rule f on Πn,

then its equivalent F on the dichotomous domain is strategy-proof. Thus, results on

strategy-proof rules on dichotomous domains can be translated to results on evalu-

ationwise strategy-proof and reshuffling invariant rules in the preference-approval

framework, and vice versa.14

13There are multiple candidates for such pi. As we note in the previous paragraph, due to reshuf-

fling invariance, the social choice of f is not affected by the choice of pi.
14There are analyses of strategy-proof social choice rules over dichotomous domains such as

Brams and Fishburn (1978) who analyze the strategy-proofness of AV; Vorsatz (2007) who con-
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However, our results in the next section use efficiency or unanimity in the

preference-approval model, and these axioms are incompatible with reshuffling

invariance. Thus, none of our results can be translated to results on strategy-proof

rules on dichotomous domains.

3 Impossibility and possibility results

We investigate the existence of evaluationwise strategy-proof rules that are efficient

and anonymous. Before going to a general result, as an example of the incompat-

ibility between evaluationwise strategy-proofness, efficiency and anonymity, con-

sider a refinement of Approval Voting:

For each profile p ∈ Πn and each candidate x ∈ X , we denote the number

of voters who approve of x as a(x,p) = |{i ∈ N | x ∈ Ai}|. We define the AV

winners as the candidates who are approved by the maximum number of voters,

and denote this set by AV (p) = {x ∈ X | ∀y ∈ X, a(x,p) ≥ a(y,p)}. Note that

some AV winners may not be efficient.

Example 3.1

Define a refinement of AV as follows: Let fAV be a rule on Πn such that for

each profile p ∈ Πn, fAV (p) is the efficient AV winner if it is unique, and if not,

fAV (p) is the first efficient AV winner according to the alphabetical order.

One can easily see that fAV is efficient and anonymous. However, it is evalu-

ationwise manipulable, hence not evaluationwise strategy-proof. We illustrate this

siders AV as a non-resolute social choice rule and gives a characterization in terms of strategy-

proofness, anonymity, neutrality and monotonicity; Bogomolnaia, Moulin, and Stong (2005) char-

acterize AV when outcomes are lotteries over candidates. However, we don’t know a full characteri-

zation of (anonymous) strategy-proof rules over dichotomous domains within the standard Gibbard-

Satterthwaite setting. On the other hand, there are considerations of Arrovian social welfare func-

tions over dichotomous domains, such as Sakai and Shimoji (2006) and more recently Maniquet and

Mongin (2015).

15



p1 p2 p3

z y z

x − y

− z x

y x −

Table 1: A preference-approval profile at which fAV is evaluationwise manipula-

ble.

for the case of three voters.

Consider the profile p in Table 1.15 Note that AV (p) = {x, y, z}. By effi-

ciency, f(p) ̸= x. Among y and z, according to the alphabetical order, fAV (p) =

y. This social choice, y, is unacceptable to voter 1. By a misreport of p′1 = (xz|y),

the outcome changes from y to x, which is acceptable to voter 1.16 Thus, fAV is

evaluationwise manipulable.

We will show that this incompatibility between evaluationwise strategy-proofness,

efficiency, and anonymity always occurs when D is “rich” in the following sense.

D ⊆ L is circular if candidates can be arranged on a circle as follows: Let x

be an arbitrary candidate, y and z be candidates adjacent to x on the circle. Then,

there exist two linear orders in D such that x is top ranked in both of these orders,

whereas in one of the orders y is the second ranked while z is the last ranked, and

in the other order, z is the second ranked and y is the last ranked.

Formally, D ⊆ L is circular if the candidates can be indexed x1, x2, . . . , xm

such that xm+1 = x1 and x0 = xm and for each k ∈ {1, . . . ,m}, there exist two

linear orders R,R′ in D with

15In Table 1, the horizontal lines between candidates represent the boundary between the accept-

able and the unacceptable range.
16p′1 = (xz|y) means that x P ′

1 z P ′
1 y and A′

1 = {x, z}, where p′1 = (R′
1, A

′
1).
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xk−1

xk

xk+1

R

R′

bottom

top

secondsecond
top

bottom

Figure 1: A circular set of preferences

(i) r1(R) = xk, r2(R) = xk+1, rm(R) = xk−1,

(ii) r1(R
′) = xk, r2(R′) = xk−1, and rm(R′) = xk+1.

This situation is summarized in Figure 1. We say that ΠD is circular if D is

circular.

The following remarks are worth to note for circular sets of preferences.

• The minimal circular sets of preferences consist of 2m preferences since

each candidate is top ranked in at least two distinct preferences.

• If D ⊆ L is circular, then each D′ ⊆ L with D ⊂ D′ is also circular.

• L is circular.

• A necessary condition for D to be circular is that for each x ∈ X , there exist

y ∈ X and a pair R,R′ ∈ D such that r1(R) = x, r2(R) = y, r1(R
′) = x,

and rm(R′) = y. Violation of this condition implies that no alternative can

be adjacent to x on the circle.
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The next result shows the incompatibility of anonymity and efficiency for eval-

uationwise strategy-proof rules.

Theorem 2

Let n be an even number, and D be a circular set of preferences. Then, there exists

no rule on Πn
D which is anonymous, efficient and evaluationwise strategy-proof.

Proof. Let f be an anonymous, efficient, and evaluationwise strategy-proof rule on

Πn
D, where D is circular. Assign a number from 1 to m to each candidate so as to

make D circular. We point out two simple facts.

FACT 1: Let i ∈ N and p ∈ Πn
D. If Ai = {f(p)}, then for each p′i = (R′

i, A
′
i) ∈

ΠD such that A′
i = {f(p)}, evaluationwise strategy-proofness implies f(p′i,p−i) =

f(p).

FACT 2: Let i ∈ N and p ∈ Πn
D. If Ui = {f(p)}, then for each p′i ∈ ΠD,

evaluationwise strategy-proofness implies f(p′i,p−i) = f(p).

Let {N1, N2} be a partition of N .

CLAIM 1: For each k ∈ {1, . . . ,m}, either N1 is decisive for xk or N2 is decisive

for xk+1.

Proof of Claim 1. The following arguments are modification of those by Sato

(2010). Let xk ∈ X . Assume that N1 is not decisive for xk.

At p ∈ Πn
D in Table 2, f(p) ̸= xk.17 (Otherwise, by Facts 1 and 2, as long as

all voters in N1 approve only xk, the social choice is xk. This is a contradiction to

our assumption that N1 is not decisive for xk.) By efficiency, f(p) = xk+1.

Next, consider p′ ∈ Πn
D in Table 2. (For each i ∈ N1, pi = p′i.) By evaluation-

wise strategy-proofness, f(p′) = xk+1. (Suppose not. Then, when the voters in

N2 change their preference-approvals from those in p′ to those in p one voter at a

17The unspecified parts in Table 2 are arbitrary. The candidate between the brackets is a social

outcome at each profile.
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p p′ p′′

N1 N2 N1 N2 N1 N2

Best xk [xk+1] xk [xk+1] xk [xk+1]

... − xk+2 − − xk−1 −

[xk+1]
... [xk+1] xk

... xk
...

... −
...

... −
...

Worst xk−1 xk xk−1 xk+2 [xk+1] xk+2

Table 2: Profiles of preference-approvals

time, the social choice changes from some candidate in X\{xk+1} to xk+1 at some

step. Since A′
i = {xk+1} for each i ∈ N2, this is a contradiction to evaluationwise

strategy-proofness.)

Finally, consider p′′ ∈ Πn
D in Table 2. (For each i ∈ N2, p′i = p′′i .) By

efficiency, f(p′′) ∈ {xk, xk+1}. Since f(p′′) = xk is a contradiction to evalua-

tionwise strategy-proofness, f(p′′) = xk+1. By Facts 1 and 2, N2 is decisive for

xk+1.

CLAIM 2: Either N1 is decisive or N2 is decisive.

Proof of Claim 2. For each xk ∈ X , either N1 is decisive for xk or N2 is decisive

for xk. (If not, then by Claim 1, N1 is decisive for xk−1 and N2 is decisive for

xk+1. However, this cannot be the case.)

Let x ∈ X . Then, the argument in the above paragraph implies that either N1

is decisive for x or N2 is decisive for x. Without loss of generality, suppose that it

is N1 who is decisive for x. If for some y ∈ X \ {x}, N1 is not decisive, then N2

is decisive for y. Let p ∈ Πn
D be such that for each i ∈ N1, Ai = {x} and for each

i ∈ N2, Ai = {y}. Then, the rule selects x but also y, which is a contradiction

since x ̸= y.
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CLAIM 3: If some N ′ ⊂ N is decisive, then each N ′′ ⊂ N with |N ′| = |N ′′| is

decisive.

Proof of Claim 3. Assume that N ′ is decisive. We claim that N ′′ with |N ′| = |N ′′|

is also decisive. Let x ∈ X and p ∈ Πn
D be such that for each i ∈ N ′′, Ai = {x}.

Let π be a permutation of N such that for each i ∈ N ′, π(i) ∈ N ′′. By anonymity,

f(p) = f(π(p)). Since N ′ is decisive, f(π(p)) = x. Thus, f(p) = x. This

implies that N ′′ is decisive for x. Since x was arbitrary, N ′′ is decisive.

Claim 2 holds for arbitrary partition {N1, N2} of N . Specifically, it holds with

N1 and N2 such that |N1| = |N2|. Then, by Claim 3, both N1 and N2 are decisive.

However, two disjoint coalitions cannot be both decisive by the definition of the

concept. This contradiction completes the proof. ■

Claims 1 and 2 in the above proof use only evaluationwise strategy-proofness

and efficiency. On the other hand, Claim 3 uses only anonymity. Thus, for the

particular case of two voters, by Claims 1 and 2 of the above proof, the following

result can be derived.

Corollary 3

Let n = 2. Let D be a circular domain. If a rule on Πn
D is efficient and evaluation-

wise strategy-proof, then either voter 1 or voter 2 is decisive.

The following example shows that the decisive voter in Corollary 3 need not to be

a dictator.

Example 3.2

Let n = 2, and D be a circular domain. For each p ∈ Πn
D, let f(p) be the best

alternative in A1 according to R2. (If A1 = ∅, then let f(p) = r1(R2).) Then,

voter 1 is decisive under this rule. It can be seen that this rule is efficient and

evaluationwise strategy-proofness. Also, neither voter 1 nor 2 is a dictator.
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Our next two results are positive conclusions for evaluationwise strategy-proof

rules either by a weakening of anonymity or by a weakening of efficiency.

Theorem 3

Let n ≥ 3. For each D ⊆ L such that r1(Ri) ̸= r1(R
′
i) for some Ri, R

′
i ∈ D,

there exists a rule on Πn
D which is efficient and evaluationwise strategy-proof under

which no voter is decisive.

Proof. Let f be a rule on Πn
D defined as follows: Fix a linear order L over all sets

of voters. Let p ∈ Πn
D. For each x ∈ X , let N(x,p) be the set of the voters

who approve x. Then, among {N(x,p) | x is an efficient AV winner at p}, let

K ⊆ N be the first coalition according to L. Let f(p) be the first candidate in

{x ∈ X | x is an efficient AV winner at p, and K = N(x,p)} in the alphabetical

order.

We claim that f is efficient and evaluationwise strategy-proof, and that no voter

is decisive under f . Since the social outcome is chosen from the set of efficient AV

winners, it is clear that f is efficient. Also, it is clear that no voter is decisive for

f . (For each i ∈ N , N \ {i} is decisive. Since there are Ri, R
′
i ∈ D such that

r1(Ri) ̸= r1(R
′
i), this implies that i is not decisive.)

Thus, we will show that f is evaluationwise strategy-proof. Let p ∈ Πn
D,

i ∈ N , and p′i ∈ ΠD. Assume f(p) ∈ Ui, i.e., i ̸∈ N(f(p),p). Our goal is to

show f(p′i,p−i) ∈ Ui.

First, assume that f(p) is not an AV winner at (p′i,p−i), i.e., f(p) ̸∈ AV (p′i,p−i).

Since f(p) ∈ Ui, a(f(p), (p′i,p−i)) ≥ a(f(p),p).18 Let x ∈ AV (p′i,p−i). Since

f(p) ∈ AV (p), a(f(p),p) ≥ a(x,p). Then, we have a(x, (p′i,p−i)) > a(x,p).

(If not, then a(f(p), (p′i,p−i)) ≥ a(f(p),p) ≥ a(x,p) ≥ a(x, (p′i,p−i)). This is

a contradiction to our assumption that f(p) ̸∈ AV (p′i,p−i) and x ∈ AV (p′i,p−i).)

18Remember that for each x ∈ X and each p ∈ Πn, a(x,p) is the number of voters who approve

x at p.
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This is possible only if x ∈ Ui. Since x was arbitrary in AV (p′i,p−i), we have

AV (p′i,p−i) ⊆ Ui. Since f(p′i,p−i) ∈ AV (p′i,p−i), it follows that f(p′i,p−i) ∈

Ui. Thus, when f(p) ̸∈ AV (p′i,p−i), there is no incentive to misreport.

In the following, we assume f(p) ∈ AV (p′i,p−i).

CASE 1: AV (p) ∩Ai = ∅.

In this case, AV (p) ⊆ Ui. We want to show AV (p′i,p−i) ⊆ Ui. Let x ∈

AV (p′i,p−i). If x ∈ AV (p), then AV (p) ⊆ Ui implies x ∈ Ui. Thus, assume

x ̸∈ AV (p). Let y ∈ AV (p). Then, a(y,p) > a(x,p). Since AV (p) ⊆ Ui, we

have y ∈ Ui. Thus, a(y, (p′i,p−i)) ≥ a(y,p) > a(x,p). Since x ∈ AV (p′i,p−i),

a(x, (p′i,p−i)) ≥ a(y, (p′i,p−i)). Thus, we have a(x, (p′i,p−i)) > a(x,p). This

is possible only when x ∈ Ui. Since x was arbitrary in AV (p′i,p−i), we have

AV (p′i,p−i) ⊆ Ui. Since f(p′i,p−i) ∈ AV (p′i,p−i), it follows that f(p′i,p−i) ∈

Ui.

CASE 2: AV (p) ∩Ai ̸= ∅.

For our purpose, we want to show f(p′i,p−i) ̸∈ Ai. Then, it suffices to

show f(p′i,p−i) ̸∈ (AV (p) ∩ Ai). (To see this, let y ∈ (Ai \ AV (p)). Then,

a(y, (p′i,p−i)) ≤ a(y,p) < a(f(p),p) ≤ a(f(p), (p′i,p−i)). Thus, y ̸∈ AV (p′i,p−i),

and hence f(p′i,p−i) ̸= y.) Let x ∈ (AV (p) ∩ Ai), and examine whether

x = f(p′i,p−i) is possible.

SUBCASE 2.1: x is not efficient at p.

At p, there is y ∈ X \ {x} such that y Rj x for each j ∈ N . Since x ∈

Ai, y ∈ Ai. Without loss of generality, assume that y is efficient at p. Then,

a(y,p) ≥ a(x,p). Since x ∈ AV (p), a(y,p) ≤ a(x,p). Thus, a(y,p) =

a(x,p). Since y Rj x for each j ∈ N , N(y,p) = N(x,p). Since y ∈ Ai and

f(p) ∈ Ui, y ̸= f(p). Then y is an efficient AV winner at p, but it is not chosen

at p. Since i ̸∈ N(f(p),p) and i ∈ N(y,p), N(f(p),p) ̸= N(y,p). Thus,

N(f(p),p) L N(y,p) = N(x,p). (If N(y,p) L N(f(p),p), then f(p) cannot
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be chosen at p, which is a contradiction.)

If x is not an efficient AV winner at (p′i,p−i), then f(p′i,p−i) ̸= x. Thus, as-

sume x is an efficient AV winner at (p′i,p−i). For x to be an AV winner at (p′i,p−i),

it should be x ∈ A′
i and f(p) ∈ U ′

i . (If x ̸∈ A′
i, then a(x, (p′i,p)) < a(x,p) =

a(f(p),p) ≤ a(f(p), (p′i,p−i)). This is a contradiction to x ∈ AV (p′i,p−i).

If f(p) ̸∈ U ′
i , then a(f(p), (p′i,p−i)) > a(f(p),p) = a(x,p) = a(x, (p′i,p−i)).

This is a contradiction to x ∈ AV (p′i,p−i).) Therefore, N(x, (p′i,p−i)) = N(x,p)

and N(f(p), (p′i,p−i)) = N(f(p),p).

If f(p) is an efficient AV winner at (p′i,p−i), then x ̸= f(p′i,p−i). (Remem-

ber that N(f(p), (p′i,p−i)) L N(x, (p′i,p−i)).) Since f(p) is assumed to be in

AV (p′i,p−i), the only chance for x to be chosen at (p′i,p−i) is that f(p) is not ef-

ficient at (p′i,p−i). Thus, assume that f(p) is not efficient at (p′i,p−i). In this case,

there is z ∈ (X \ {f(p)}) such that at (p′i,p−i), z Rj f(p) for each j ∈ N \ {i}

and z R′
i f(p). Without loss of generality, assume that z is efficient at (p′i,p−i).

Since f(p) ∈ AV (p′i,p−i), z ∈ AV (p′i,p−i). Thus, z is an efficient AV

winner at (p′i,p−i). The fact that f(p) is efficient at p, but not efficient at (p′i,p−i)

implies f(p) Ri z and z R′
i f(p), and for each j ∈ N \ {i}, z Rj f(p). Since

f(p) Ri z and f(p) ∈ Ui imply z ∈ Ui, N(z, (p′i,p−i)) ⊇ N(z,p). Since f(p)

is an AV winner at p, each voter approves f(p) if and only if he approves z at p.

Thus, N(z,p) = N(f(p),p). Since i ̸∈ N(f(p),p) and i ∈ N(x,p), x ̸= z. If

N(z, (p′i,p−i)) ⊋ N(z,p), then x cannot be an AV winner at (p′i,p−i), which is a

contradiction to our assumption. Thus, N(z, (p′i,p−i)) = N(z,p) = N(f(p),p).

Since N(f(p),p) L N(x,p), we have N(z, (p′i,p−i)) L N(x, (p′i,p−i)). Thus,

x ̸= f(p′i,p−i).

SUBCASE 2.2: x is efficient at p.

Since x is chosen from AV (p), x is an efficient AV winner. Since i ̸∈ N(f(p),p)

and i ∈ N(x,p), N(f(p),p) ̸= N(x,p). Thus, x ̸= f(p) implies N(f(p),p)LN(x,p).
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Then, the arguments from the second paragraph in Subcase 2.1 show x ̸=

f(p′i,p−i). ■

Note that the rule constructed in the proof of Theorem 3 is nearly anonymous

in the sense that for each p such that only one candidate is an efficient AV winner

at p, renaming voters does not change the social choice.

The following result says that we also have a possibility when we weaken effi-

ciency to unanimity in Theorem 2.

Theorem 4

Let n ≥ 2. For each D ⊆ L, there exists a rule on Πn
D which is anonymous,

unanimous, and evaluationwise strategy-proof.

Proof. Let f be a rule on Πn
D defined as follows: For each p ∈ Πn

D, if there is

x ∈ X such that r1(Ri) = x for each i ∈ N , then f(p) = x. Otherwise, let f(p)

be the candidate in AV (p) who is the first according to the alphabetical order.

It is clear that f is anonymous and unanimous. We will show that f is evalua-

tionwise strategy-proof. Let p ∈ Πn
D and i ∈ N . Assume f(p) ∈ Ui. Let x ∈ Ai,

and examine whether it is possible to have f(p′i,p−i) = x for some p′i ∈ ΠD.

By definition, f(p) is approved by the largest number of voters. (However,

since f(p) ∈ Ui, a(f(p),p) < n.) Moreover, if there are other such candi-

dates, i.e., |AV (p)| ≥ 2, f(p) is the first one among AV (p) according to the

alphabetical order. Since x ∈ Ai and f(p) ∈ Ui, a(x, (p′i,p−i)) ≤ a(x,p) and

a(f(p),p) ≤ a(f(p), (p′i,p−i)). Since x ̸= f(p), either a(x,p) < a(f(p),p), or

a(x,p) = a(f(p),p) < n and x comes alphabetically after f(p). In the former

case, a(x, (p′i,p−i)) < a(f(p), (p′i,p−i)), and hence x ̸= f(p′i,p−i). In the latter

case, a(x, (p′i,p−i)) < n, and a(x, (p′i,p−i)) ≤ a(f(p), (p′i,p−i)) and x comes

alphabetically after f(p), and hence x ̸= f(p′i,p−i). Thus, f is evaluationwise

strategy-proof. ■
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4 Concluding remarks

We propose evaluationwise strategy-proofness as a new notion of strategy-proofness

in a collective choice framework that combines rankings with evaluations. Our set-

ting, compared to the standard Gibbard–Satterthwaite framework, is richer in in-

puts. On the other hand, evaluationwise strategy-proofness is more restricted in in-

centives for manipulation. These opposing effects lead to a mixed picture regarding

the existence of non-manipulable rules. On one hand, for an even number of vot-

ers, we have an impossibility result in finding evaluationwise strategy-proof rules

which are anonymous and efficient.19 On the other hand, we are able to present

results which are much more permissive than those of the Gibbard–Satterthwaite

setting where strategy-proofness is incompatible with the conjunction of surjec-

tivity and non-dictatoriality. In fact, the impossibility we establish vanishes when

anonymity is slightly compromised or efficiency is weakened to unanimity.

Our possibility results are established through AV refinements, which is not

surprising: the analysis of evaluationwise strategy-proofness in the preference-

approval framework is closely connected to the analysis of strategy-proofness over

the domain of dichotomous preferences where AV is known to have good strate-

gic properties.20 As discussed in Section 2.4, there are natural channels between

the two settings which allow certain results to be translated from one to the other.

In particular, results that establish the existence of anonymous and strategy-proof

rules over dichotomous domains would imply the existence of anonymous and

evaluationwise strategy-proof rules in the preference-approval framework. Sur-

prisingly, a complete picture of strategy-proof social choice rules over dichotomous

domains seems to be missing.

We close by restating our conviction on the existence of real-life cases where

19Whether this impossibility holds for an odd number of voters remains an open question.
20See, for example, the survey papers by Ju (2010) and Xu (2010).

25



voter behavior would correspond to the behavioral assumptions underlying eval-

uationwise strategy-proofness. Testing to which extent this conviction is valid

presents interesting directions of computational and experimental research.
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