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Abstract

This paper introduces composite absolute value and sign (CAVS) forecasts, a non-

linear framework that combines forecasts of the sign and absolute value of a time

series into conditional mean forecasts. In contrast to linear models, the proposed

framework allows different predictors to separately impact the sign and absolute

value of the target series. Among other results, I show that the conditional mean

can be accurately approximated by the product of the mean squared error optimal

sign and absolute value forecasts. An empirical application using the FRED-MD

dataset shows that CAVS forecasts substantially outperform linear forecasts for se-

ries that exhibit persistent volatility dynamics, such as output and interest rates.
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1 Introduction

Forecasting macroeconomic and financial time series is a challenging task. A ubiquitous

finding in the economic forecasting literature is that linear models for the conditional

mean improve only marginally, if at all, over simple benchmarks (Stock and Watson,

2007; Goyal and Welch, 2008). In contrast, standard volatility models have shown con-

siderable success in capturing volatility dynamics (Engle, 1982; Andersen et al., 2006;

Brownlees et al., 2011) and there is evidence of directional predictability (Leung et al.,

2000; Diebold et al., 2007; Nyberg, 2011). Several explanations are available for the

unconvincing performance of linear forecasts. The predictable component of the target

series may be small relative to the unpredictable error term, in which case even a correctly

specified model will display only mild gains over simple benchmarks. Alternatively, this

finding may be taken as evidence of model misspecification, implying that the class of

models considered is not rich enough to exploit all available information.

In this work, I introduce composite absolute value and sign (CAVS) forecasts, a non-

linear forecasting framework that exploits predictability in signs and absolute values to

generate conditional mean forecasts.1 Based on the fact that any random variable Yt can

be written as |Yt|sign(Yt), CAVS forecasts are defined as a function of mean squared error

(MSE) optimal sign and absolute value forecasts. In contrast to linear models, in which

conditional mean predictors must impact both the sign and absolute value, CAVS allows

for different predictors to separately affect each of the components of the target series.

In contrast to general nonlinear models, CAVS forecasts are simple to interpret and are

designed to exploit two specific features that figure prominently in the macroeconomic

and financial forecasting literature: volatility and sign predictability.

I introduce a framework to formalize CAVS forecasts and study its properties. The

proposed framework is employed to establish three results. First, the conditional mean

can be written as the product of MSE optimal forecasts of signs and absolute values

as well as a covariance term that can be explicitly modeled. If the underlying data-

1I assume throughout that the sign of the target series is not constant, as would be the case for series
expressed in growth rates.
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generating process (DGP) is additive with symmetric shocks, the covariance term will be

small relative to the variance of the shocks. Second, I provide an upper bound to the MSE

of CAVS forecasts that scales with the losses in sign and absolute value forecasting. This

result highlights that CAVS-based forecasts are particularly suited for series that exhibit

persistent volatility dynamics, and hence absolute value predictability. Third, I study a

nonlinear DGP in which variables may affect signs and absolute values differently. I show

that, for this DGP, the MSE of the best linear predictor increases quadratically with

the degree of nonlinearity. A simulation study highlights that departures from linearity

generate substantial MSE gains for CAVS models.

The proposed framework is applied to the FRED-MD dataset (McCracken and Ng,

2016), which consists of 128 monthly financial and macroeconomic time series. I construct

and evaluate 1, 3, 6, and 12 months ahead forecasts for the conditional mean, the absolute

value and the sign of each series in the dataset. It is well-known that when the number of

predictors is large, dimension reduction techniques may improve forecast accuracy (Stock

and Watson, 2012; Ng, 2013; Kim and Swanson, 2014). I consider principal components

regression (PCR), ridge and LASSO as the baseline linear models. CAVS forecasts are

constructed as the product of sign and absolute value forecasts, and a number of specifi-

cations may be entertained. I consider CAVS-PCR, CAVS-Ridge, and CAVS-LASSO as

the baseline CAVS models. Each baseline model is constructed using the same method

to forecast both the sign and the absolute value of the target variable. In addition to the

baseline CAVS models, I consider absolute value forecasts implied by a GARCH(1,1), sign

forecasts obtained by a variety of machine learning algorithms, as well as combinations

of sign and absolute value forecasts constructed using different methods to forecast each

component. Detailed results are presented for the series considered in Kim and Swanson

(2014). These include the unemployment rate, personal income less transfer payments,

the 10-year treasury rate, the consumer price index, the producer price index, nonfarm

payroll employment, industrial production, M2 money stock, and the S&P 500 index.

In addition to the variables considered in Kim and Swanson (2014), I present detailed

results for the federal funds rate, which may be of particular interest to private sector
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forecasters.

A number of findings emerge from the empirical application. First, CAVS-based di-

rectional and conditional mean forecasts outperform their linear counterparts for the

majority of the selected series across all horizons considered. In particular, CAVS-based

forecasts are substantially more accurate than linear forecasts for the federal funds rate,

industrial production, nonfarm payroll employment, and the S&P 500 across all hori-

zons. Among the linear models considered, ridge and LASSO display similar perfor-

mance and outperform PCR, particularly for short forecast horizons. All baseline CAVS

specifications considered perform similarly, with CAVS-Ridge modestly outperforming

CAVS-LASSO and CAVS-PCR.

Second, I compare the performances of CAVS-Ridge and PCR for all components of

the FRED-MD dataset. CAVS-Ridge outperforms PCR for the majority of the FRED-

MD components, and is particularly successful for series that exhibit persistent con-

ditional volatility dynamics, such as interest rates, stocks, and output series. As the

forecast horizon increases, the CAVS-Ridge performance gains become widespread, out-

performing PCR for about 75% of the FRED-MD components. Notably, these findings

remain qualitatively the same for any choice of CAVS specification and linear benchmark

considered.

Finally, I explore a number of alternative CAVS specifications. In addition to com-

binations between signs and absolute values obtained by PCR, Ridge, and LASSO, I

consider absolute value forecasts based on a GARCH(1,1) and sign forecasts obtained

from random forests (Breiman, 2001), AdaBoost (Freund and Schapire, 1995), k-nearest

neighbors (kNN; see Devroye et al., 1996) and neural networks (NN; see White, 2006). All

specifications perform similarly, with GARCH(1,1)-Ridge displaying modest gains over

the baseline CAVS specifications. Among the machine learning algorithms, the most ac-

curate forecasts are achieved by methods based on regression trees. In particular, random

forests produce more accurate forecasts when compared to the baseline CAVS specifica-

tions for 20% of the selected series. Additionally, I consider forecast combinations and

model selection strategies. In line with Timmerman (2006) and Diebold and Shin (2019),
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I find that forecast averaging performs better than model selection. In addition, I find

that forecast averages that include CAVS forecasts outperform those that do not. Over-

all, the results support the view that exploiting nonlinearities in macroeconomics series

improves forecast accuracy (see also Marcellino, 2002; Clements et al., 2004; Terasvirta,

2006).

It is important to emphasize that this is not the first paper to consider the decom-

position Yt = |Yt|sign(Yt). When applied to stock returns, Diebold and Christoffersen

(2006) argue that both of the right-hand side components are predictable, yet their prod-

uct is not. Anatolyev and Gerko (2005) apply this decomposition to develop a market

timing test, whereas Rydberg and Shephard (2003) employ it to model the dynamics

of trade-by-trade price movements in a market microstructure setting. Closely related

to this work, Anatolyev and Gospodinov (2010) model excess returns by combining a

multiplicative error model for the absolute values, a dynamic binary model for signs, and

a copula for their interaction. This paper differs from Anatolyev and Gospodinov (2010)

in that rather than modeling the joint likelihood of the decomposition model through the

use of copulas, CAVS forecasts are defined as the solutions to two independent minimiza-

tion problems — thus bypassing the need for a copula altogether. This paper is related

to the macroeconomic forecasting literature, which includes work by Stock and Watson

(2002, 2012),Kim and Swanson (2014), and Cheng and Hansen (2015), among others.

Additionally, this work also relates to the literature on nonlinear forecasting methods in

economics. This includes work by Clements et al. (2004), Terasvirta (2006), and White

(2006), among others.

The remainder of this paper is structured as follows. Section 2 introduces the CAVS

framework, Section 3 contains a simulation study, and Section 4 presents the empirical

application. Concluding remarks follow in Section 5.
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2 CAVS Forecasts

2.1 Notation and Definition

Let {Yt} denote a zero mean scalar time series of growth rates2 and {Xt} with Xt ∈ Rn

a time series of t − 1 measurable predictors. In this work, I consider a forecaster whose

objective is to construct a forecast of Yt given Xt that minimizes the MSE. It is well

known (see Brockwell and Davis, 1991) that the MSE optimal forecast of Yt given Xt is

the conditional expectation

µ(Xt) = E
[
Yt

∣∣∣Xt

]
= arg min

m∈M
E
[(
Yt −m(Xt)

)2]
,

where M is the collection of measurable functions m of Xt having finite variance.

The methodology introduced in this paper builds on a decomposition of the conditional

mean into the product of the conditional expectations of the absolute value and sign of

the target variable. It is straightforward to verify that the identity Yt = |Yt|sign(Yt)

implies that the conditional mean may be expressed as

µ(Xt) = E
[
|Yt|
∣∣∣Xt

]
E
[
sign(Yt)

∣∣∣Xt

]
+ Cov

(
|Yt|, sign(Yt)

∣∣∣Xt

)
. (1)

The representation in (1) highlights that the optimal forecast for Yt given Xt can be writ-

ten as the product of MSE optimal absolute value and sign forecasts and a conditional

covariance term. This decomposition motivates the introduction of CAVS forecasts, a

nonlinear forecasting framework that exploits componentwise predictability in the abso-

lute value and sign to approximate the conditional mean.

Formally, denoting by CA and CS collections of functions for the absolute value and

the sign of Yt, CAVS forecasts are defined as

µCAVS(Xt) = m∗A(Xt)m
∗
S(Xt) + c(Xt) , (2)

2I assume that E[Y 2
t ] <∞ throughout.
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where

m∗A(Xt) = arg min
m∈CA

E
[(
|Yt| −m(Xt)

)2]
, (3)

m∗S(Xt) = arg min
m∈CS

E
[(

sign(Yt)−m(Xt)
)2]

, (4)

c(Xt) = Cov
(
|Yt|, sign(Yt)

∣∣∣Xt

)
. (5)

It is important to emphasize that CAVS forecasts do not generally coincide with the

conditional mean. In particular, if CA and CS do not include the optimal forecasts

µA(Xt) = E
[
|Yt|
∣∣Xt

]
and µS(Xt) = E

[
sign(Yt)

∣∣Xt

]
respectively, the CAVS forecast will

differ from the conditional mean.

It is widely documented in the economic forecasting literature that linear models for

the conditional mean may exhibit poor out-of-sample performance (Stock and Watson,

2007; Rossi, 2013). Nonlinear models are typically able to approximate arbitrary functions

(White, 1990). This flexibility comes at the expense of increased computational complex-

ity, heightened risks of overfitting, and difficulties of interpretation (White, 2006), and the

evidence regarding the performance of nonlinear models in macroeconomic and financial

time series is inconclusive (Clements et al., 2004; Terasvirta, 2006). In contrast to general

nonlinear models, the CAVS framework is designed to exploit two specific features that

figure prominently in the macroeconomic and financial forecasting literature: volatility

and sign predictability (see Diebold and Christoffersen, 2006).

The interpretation of the CAVS forecast is straightforward: it is the expected mag-

nitude of the next realization weighted by the probability that it will be positive (or

negative). In fact, the CAVS forecast is the MSE optimal forecast given knowledge of

either the sign or absolute value of the next realization. Computationally, the construc-

tion of CAVS forecasts requires the estimation of models for the absolute value and sign

of the target series. The results from the empirical application show that CAVS forecasts

based on generalized linear models — which are simple to compute — add substantial

flexibility when compared to linear models for the conditional mean.

To make the CAVS definition operational, the forecaster must specify appropriate
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functions for the absolute value, the sign, and the covariance term c(Xt).

The absolute value of the target series may be modeled as generalized linear functions

of the predictors. Alternatively, building on the empirical success of GARCH models

(Engle, 1982; Brownlees et al., 2011), absolute value forecasts may be constructed based

on conditional volatility forecasts.

A number of possibilities are available to construct sign forecasts. First, one may

employ standard generalized linear models, such as logit and probit, to forecast the signs.

Alternatively, the machine learning literature has put forward a number of methods to

forecast binary random variables and their associated probabilities. In the empirical

application, generalized linear models as well as nonparametric methods are used to con-

struct probability forecasts. Note that the sign forecast used in the construction of CAVS

forecasts is based on the MSE (of signs) and hence is a probabilistic, rather than binary,

forecast. The MSE is a natural choice in this setting as it elicits the (componentwise)

conditional expectation. Alternative combinations of componentwise loss functions may

be explored, particularly for conditional mean forecasting under different loss functions.

Finally, I remark that the c(Xt) term is often negligible in practice. In fact, Proposi-

tion 3 shows that, for additive models with symmetric shocks, c(Xt) is small relative to

the irreducible MSE and may therefore be ignored for forecasting purposes. Alternatively,

one may explicitly model the joint distribution of signs and absolute values by means of

a copula function, as in Anatolyev and Gospodinov (2010).

2.2 Theoretical Results

This section provides a number of theoretical results for CAVS forecasts. Throughout

this section, I express Yt as the sum of the conditional mean and an unpredictable error

term:

Yt = µ(Xt) + σuut , ut
i.i.d∼ D(0, 1) , (6)
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where E[Yt] = 0, E[Y 2
t ] < ∞ and D is a distribution with mean zero and unit variance.

All proofs are presented in the Appendix.

Bounding the loss of CAVS forecasts. Forecasts of economic series are typically

based on misspecified approximations to the conditional mean (see White, 2006). The

following proposition provides an upper bound for the MSE of CAVS forecasts that

depends the approximating properties of CA and CS.

Proposition 1. The MSE of the CAVS forecast given in (2) is such that

E
[(
Yt − µCAVS(Xt)

)2]
≤ σ2

u + a1E
[(
µS(Xt)−m∗S(Xt)

)2
+
(
µA(Xt)−m∗A(Xt)

)2]
,

where a1 > 0 is a constant that depends on E[Y 2
t ].

Proposition 1 shows that the accuracy of CAVS forecasts depends on the accuracy

of the approximations to µA(Xt) and µS(Xt). If µA(Xt) ∈ CA and µS(Xt) ∈ CS, the

CAVS forecast is equivalent to the conditional mean. A large body of research has doc-

umented the good forecasting performance of standard volatility models (see Andersen

et al., 2006; Brownlees et al., 2011). This observation suggests that, for series with persis-

tent volatility dynamics, µA(Xt) may be accurately approximated. In addition, Diebold

and Christoffersen (2006) show that conditional volatility dynamics implies directional

predictability, and Leung et al. (2000) document evidence of sign predictability in excess

of that captured by linear models for the conditional mean. Taken together, these obser-

vations suggest that componentwise approximations to the conditional mean may be able

to leverage volatility and sign predictability into accurate conditional mean forecasts.

Proposition 1 assumes that the forecaster knows c(Xt), the conditional covariance

of signs and absolute values. In practice, this is typically not the case. The forecaster

may explicitly model this term. Alternatively, the next proposition describes the MSE of

CAVS forecasts when c(Xt) is unknown and set to 0 in (2).
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Proposition 2. The MSE of the forecast constructed as m∗A(Xt)m
∗
S(Xt) is such that

E
[(
Yt −m∗A(Xt)m

∗
S(Xt)

)2]
≤ σ2

u + a2E
[(
µS(Xt)−m∗S(Xt)

)2
+
(
µA(Xt)−m∗A(Xt)

)2]
+ 2E

[
c(Xt)

2
]
,

where a2 > 0 is a constant that depends on E[Y 2
t ] and c(Xt).

Proposition 2 shows that the excess risk, in MSE terms, incurred due to setting c(Xt)

to 0 in the construction of the CAVS forecast is additive and proportional to E[c(Xt)
2].

Next, I show that E[c(Xt)
2] is small relative to σ2

u, the irreducible uncertainty.

Proposition 3. Considering the representation given in (6) and assuming D is symmet-

ric about 0, then

E
[(
Yt − µA(Xt)µS(Xt)

)2]
≤ (1 + γ)E

[(
Yt − µ(Xt)

)2]
,

with 0 < γ ≤ 1/2. In addition, if D is the Gaussian distribution, then γ ≈ 0.04187.

Proposition 3 provides an upper bound to the contribution of the conditional covari-

ance term — the approximation error obtained from a componentwise approximation of

µ(Xt) — to the overall MSE. Combining this result with Proposition 2 yields the following

corollary.

Corollary 1. Consider the representation given in (6) and assume D is symmetric about

0. Then, the MSE of the forecast constructed as m∗A(Xt)m
∗
S(Xt) is such that

E
[(
Yt −m∗A(Xt)m

∗
S(Xt)

)2]
≤ 2σ2

u + a2E
[(
µS(Xt)−m∗S(Xt)

)2
+
(
µA(Xt)−m∗A(Xt)

)2]
,

where a2 is the same as in Proposition 2.

Corollary 1 shows that the MSE of the CAVS forecast constructed by neglecting c(Xt)

is driven by the losses in sign and absolute value forecasting. Taken together, Propositions

1 – 3 highlight that CAVS forecasts may provide suitable approximations to the condi-

tional mean, especially when the componentwise forecasts are accurate approximations
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of their targets. Next, I present a DGP in which accurate approximations are available

for each of the components, yet linear models for the conditional mean are not able to

exploit all available information.

Linear forecasts in a nonlinear setting. Consider the following DGP:

Yt =
∣∣X ′t(β + δe1)

∣∣sign(X ′tβ) + ut, ut
iid∼ D(0, σ2

u) , (7)

where X = (x1,t, x2 t)
′, e1 = (1, 0), and δ ∈ R. This choice of functional form allows

x1 to affect the sign and absolute value of the target variable differently. Note that

linear models are obtained by setting δ = 0. In contrast, as |δ| increases, the resulting

model exhibits weak linear conditional mean predictability with strong sign and absolute

value predictability. In addition, κ = β1+δ
β1

controls the size of δ relative to β1, thus

parameterizing departures from linearity in this model. Both the absolute value and the

sign of Yt may be accurately approximated by generalized linear models, yet linear models

for the conditional mean will have poor performance as |κ− 1| increases.

Proposition 4. Consider the model given in (7) with β1 = β2 = β, cov(x1 t, x2 t) = 0,

and var(xi t) = σ2
i for i = 1, 2. The MSE of the best linear predictor is given by

E
[(
Yt −X ′tβ∗

)2]
= σ2

u + β2κ2
(
σ2
1 −

E[x21 tS(κ)]2

σ2
1

− E[x1 tx2 tS(κ)]2

σ2
2

)
− 2β2κE[x1 tx2 tS(κ)]

(E[x21 tS(κ)]

σ2
1

+
E[x22 tS(κ)]

σ2
2

)
+ β2

(
σ2
2 −

E[x22 tS(κ)]2

σ2
2

− E[x1 tx2 tS(κ)]2

σ2
1

)
,

where β∗ = arg minβ E
[(
Yt −X ′tβ

)2]
and S(κ) = sign(x21 tκ+ x1 tx2 t(1 + κ) + x22 t).

Proposition 4 provides an exact formula for the MSE of the best linear predictor in

a model where variables impact the sign and absolute value of the target differently.

Although no closed formula solution is available for the expectations involved, they can

be evaluated by numerical methods. In addition, the order of the MSE of the best linear

predictor can be computed for large κ.
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Corollary 2. There exists a κ0 such that for all κ > κ0,

E
[(
Yt −X ′tβ∗

)2]
≥ a3κ

2 ,

where a3 > 0 is a constant that depends on E[x21 tS(κ)],E[x22 tS(κ)] and E[x1 tx2 tS(κ)].

Corollary 2 shows that, for large enough κ, the MSE of the best linear predictor grows

with κ2. The next section contains detailed simulation results for this model.

3 Simulation Study

In this section, I carry out a simulation study to numerically evaluate the performance

of CAVS forecasts. I consider two simulation settings. In addition to the model given in

(7), I simulate from the following model:

Yt =
∣∣X ′tβ∣∣sign(X ′t(β + δe1)) + ut, ut

iid∼ N(0, 1) . (8)

Both models are nonlinear in x1 yet approximately linear in x2, and nest a linear model

when κ = 1. The nonlinearity in model (7) arises due to increases in the coefficient

attached to x1 in the absolute value component. This implies that the variance of the

target variable increases with κ = β1+δ
β1

. In contrast, the nonlinearity in model (8) arises

on the sign component, and hence does not influence the variance of the target variable.

In both models, departures from linearity are obtained by varying κ. Each predictor

is an i.i.d draw from a standard Gaussian distribution. Three forecasting strategies

are compared. First, I consider the linear forecast obtained by ordinary least squares

regression of Yt on Xt. Second, I consider the CAVS forecast in (2) constructed by setting

c(Xt) to 0. Finally, I consider a CAVS forecast where c(Xt) = 0 and sign forecasts are

obtained from a probit regression of 1{Yt > 0} on Xt.

FIGURE 1 ABOUT HERE

Figure 1 illustrates the MSE ratios of each forecasting strategy relative to the best

linear predictor for the two simulation settings considered. Values below 1 indicate that
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the MSE of a given strategy is smaller than that of the linear forecast. Solid lines

represent the CAVS forecasts constructed by setting c(Xt) = 0, whereas dashed lines

represent the CAVS forecasts constructed with c(Xt) = 0 and sign forecasts based on

a probit regression. The results from both simulation settings are similar. For large

values of κ or for κ ≈ 0, CAVS forecasts substantially outperform the linear forecast. In

particular, for large κ, CAVS forecasts display the strongest performance gains on the

DGP in which nonlinearities arise in the absolute value of the target series. In contrast,

for κ ≈ 0, CAVS forecasts display the largest gains on the DGP in which nonlinearities

arise in the sign of the target series. For κ ≈ 1, the benefits of exploiting the existing

nonlinearities are outperformed by the cost of neglecting the conditional covariance term

by setting c(Xt) to 0, and linear models that ignore the nonlinearities will perform better

than a CAVS forecast that does not model the conditional covariance term. Overall,

the simulations highlight that deviations from linearity — such as different predictors

impacting different components of the target series — generate sizable gains for CAVS

forecasts.

4 Empirical Application

I employ the framework introduced in this work to forecast the components of the FRED-

MD dataset (McCracken and Ng, 2016), which consists of 128 monthly financial and

macroeconomic series. As in McCracken and Ng (2016), series are arranged in eight

groups: (1) output and income; (2) labor market; (3) housing; (4) consumption, orders

and inventories; (5) money and credit; (6) interest and exchange rates; (7) prices; and (8)

stock market. Detailed results are presented for a subset of the selected series considered

in Kim and Swanson (2014). Additionally, I also report results for the Fed Funds rate,

which may be particularly of interest to private sector forecasters.

All series are transformed as suggested in McCracken and Ng (2016). In particular,

some series are not expressed in growth rates.3 Series that do not change signs over

the whole sample are excluded from the forecast comparison, but are kept as predictors

3For example, series in the housing group are the logs of housing starts, and hence are always positive.
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to forecast the remaining variables. Additionally, the suggested transformations assume

price series are integrated of order two, implying that the transformed series are twice

differenced. This may hamper sign predictability. Details of the data and their trans-

formations can be found in McCracken and Ng (2016). Five series with more than 10

missing observations are dropped from the dataset.4 The remaining missing values are

replaced by the unconditional mean of the series computed over the whole sample. After

all transformations, the panel consists of data for 123 series from March 1959 to January

2020, corresponding to 731 months.

There is a large literature on macroeconomic forecasting. Stock and Watson (2002,

2007, 2012) introduce diffusion index models and document the good performance of

PCR for macroeconomic forecasting. Kim and Swanson (2014) compare the forecasting

performance of a variety of dimension reduction techniques, and find that PCR is im-

proved when combined with other shrinkage-based techniques. Cheng and Hansen (2015)

consider forecast averaging methods, and find that model averaging improves over PCR

at longer horizons and performs on par with other shrinkage methods at shorter forecast

horizons. Most of these studies focus on linear models and emphasize the issues related

to the dimensionality of the data.

In contrast, Stock and Watson (1999), White and Swanson (1997), Marcellino (2002),

and Bai and Ng (2008) examine nonlinear forecasts of economic variables. There is mixed

evidence regarding the performance of nonlinear models. Stock and Watson (1999) find

limited evidence of univariate nonlinear models improving upon linear forecasts, and

that the best nonlinear models are typically tightly parameterized. White and Swan-

son (1997) find that flexible nonlinear models are particularly suitable for forecasting at

longer horizons and document evidence of nonlinearities in nine macroeconomic series.

Marcellino (2002) documents substantial evidence of exploitable nonlinearities in a num-

ber of macroeconomic series in the European Monetary Union, and Bai and Ng (2008)

find that allowing for nonlinearities in the construction of the factors may improve the

4These are: New orders for consumer goods (ACOGNO), New orders for nondefense capital goods
(ANDENOx), Trade weighted U.S. Dollar Index: Major currencies (TWEXMMTH), consumer sentiment
index (UMCSENTx), and the VXO volatility index (VXOCLSx).
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accuracy of PCR forecasts. See Clements et al. (2004), White (2006), and Terasvirta

(2006) for extended discussions on forecasting economic variables with nonlinear models.

4.1 Forecasting Methodology

I carry out a pseudo out-of-sample forecasting exercise on the FRED-MD dataset. I

construct and evaluate conditional mean, absolute value and sign forecasts for h = 1, 3, 6

and 12 months ahead for 113 series.5 Following Stock and Watson (2012) and Boot and

Nibbering (2019) all models include 4 lags of the dependent variable on the predictive

regression, and dimension reduction techniques are applied to the remaining predictors.

Forecasts are produced recursively starting from January 1985 until the end of the sample.

4.1.1 Linear Forecasts

Principal components regression For each series in the panel and at each out-of-

sample period T , PCR forecasts are constructed using

Ŷ PCR
T+h (r) =

4∑
p=1

ρ̂pYT−p+1 +
r∑
i=1

λ̂iF̂i T ,

where F̂i T is the i-th principal component of {Xt}Tt=1, and Xt denotes a vector of pre-

dictors. The predictive regression is estimated by ordinary least squares, and forecasts

are constructed for r = 1, . . . , 100. Following Boot and Nibbering (2019), for each out-

of-sample period T, I choose,

r∗ = arg min
1,...,100

T∑
t=T−60

(
Yt − Ŷt(r)

)2
,

and take the PCR forecast to be Ŷ PCR
T+h (r∗).

5These are the 123 series considered with the exception of those that do not change sign in the
evaluation period.
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Penalized regression For each series in the panel and at each out-of-sample period

T , penalized forecasts are constructed using the model:

ŶT+h(λl, l) =
4∑
p=1

ρ̂pYT−p+1 +X ′T β̂ ,

where

(ρ̂1, . . . , ρ̂4, β̂) = arg min
1

T

T∑
t=4

(
Yt+h −

4∑
p=1

ρ̂pYt−p+1 +X ′tβ̂
)2

+ λgl(β)

and where λ is a tuning parameter, g1(β) = 2
∑n

i=1 |βi| is the LASSO penalty, and

g2(β) =
∑n

i=1 β
2
i is the ridge penalty. Following Boot and Nibbering (2019), LASSO

forecasts are constructed for log(λ) ∈ {−30,−29.7, . . . , 0}, whereas ridge forecasts are

constructed for log(λ) ∈ {−15,−14.7, . . . , 15}. I then select, for each out-of-sample

period T and choice of l,

λ∗l = arg min
λ

T∑
t=T−60

(
Yt − Ŷt(λ, l)

)2
,

and the LASSO forecasts are given by Ŷ LASSO
T+h (λ∗1, 1), and ridge forecasts by Ŷ Ridge

T+h (λ∗2, 2).

4.1.2 CAVS Forecasts

Absolute value forecasts Absolute value forecasts are obtained using the same base-

line methods employed to construct linear conditional mean forecasts, with minor ad-

justments. In particular, the target variable is |YT+h| rather than YT+h, and a larger set

of predictors Wt = (X ′t, |X ′t|) is considered.6 In addition to PCR, ridge, and LASSO, I

consider absolute value forecasts implied by an AR(4)-GARCH(1,1) model:

YT+1 =
4∑
p=1

ρ̂pYT−p+1 + σT+1|TuT+1, uT+1
i.i.d∼ D(0, 1)

σ2
T+1|T = ω + α

(
YT −

4∑
p=1

ρ̂pYT−p

)2
+ βσ2

T ,

6The absolute value is taken coordinate wise.

16



where D is a distribution with zero mean and unit variance. Forecasts are constructed

as:

|YT+1|G =
1

B

B∑
b=1

∣∣∣ 4∑
p=1

ρ̂pYT−p+1 + σT+1û
b
T+1

∣∣∣ ,
where ûb is a draw from the GARCH filtered residuals (Barone-Adesi et al., 2008). Fore-

casts for h > 1 are obtained by iterating the model forwards (Brownlees and Souza,

2020).

Sign forecasts Similarly to absolute value forecasts, sign forecasts are constructed

employing the baseline methods to forecast the signs of the target variable, with a few

adjustments. First, the target variable is ZT+h = 1{YT+h > 0}. For Sign-PCR, a logit

regression based on the same factors (F̂T ) created to forecast YT+h is estimated. Sign-

Ridge and Sign-LASSO are estimated by penalized maximum likelihood.7 In addition

to PCR, ridge and LASSO, I consider a number of machine learning algorithms to con-

struct sign forecasts. In particular, I consider random forests (Breiman, 2001), AdaBoost

(Freund and Schapire, 1995), k-nearest neighbors (Devroye et al., 1996) and neural net-

works (White, 2006). All tuning parameters are selected on the basis of past predictive

performance.

Baseline CAVS forecasts CAVS forecasts are constructed as the product of sign and

absolute value forecasts, and a number of specifications may be entertained. I consider a

set of baseline CAVS specifications where the same method is used to forecast signs and

absolute values, and denote them as CAVS-PCR, CAVS-Ridge, and CAVS-LASSO.

4.1.3 Forecast combinations

In addition to baseline linear and CAVS models, I explore the performance of forecast

combinations. First, I consider model selection based on past predictive performance for

both CAVS and linear forecasts. The linear forecast is based on the model (PCR, ridge,

7The grid for λ is constructed based on the whole sample and is given by ε, . . . , λmax, where ε ≈ 0
and λmax is the λ value such that all coefficients in the model are zero (see Friedman et al., 2010).
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or LASSO) that minimizes the MSE over the last 60 months. In contrast, model selec-

tion in the CAVS framework amounts to choosing the best forecasting strategy for each

component. Component-specific models are chosen by their predictive performance in

forecasting the appropriate target variable, where performance is measured by the MSE.

Second, I consider equally weighted forecast combinations based exclusively on linear or

CAVS forecasts. I consider 12 CAVS specifications to average over: the permutations

of PCR, Ridge and LASSO, in addition to GARCH-based absolute value forecasts. In

contrast, there are 3 linear specifications to average over. Finally, I consider a hybrid

forecast given by the average of the two previously constructed equal weighted forecasts.

Forecast evaluation As is standard in the forecasting literature, I evaluate conditional

mean forecasts by their pseudo out-of-sample MSE, defined as

MSEim =
1

T

T∑
t=1

(
Ŷi t(m)− Yi t

)2
,

where i = 1, . . . , n denotes the target series, T the number of pseudo out-of-sample

observations, and Ŷi t(m) is the forecast for Yi t based on method m. Diebold-Mariano

tests (Diebold and Mariano, 1995) of superior predictive ability are carried out to as-

sess whether strategies improve forecast accuracy relative to the PCR benchmark. In

particular, denoting by εt+h(m) model m’s prediction error, the null hypothesis of the

DM test considered is H0 : E[ε2t+h(m)] < E[ε2t+h(PCR)]. The test statistic is constructed

as the sample analog of E[ε2t+h(m)] − E[ε2t+h(PCR)], scaled by a heteroskedasticity and

autocorrelation robust estimator of its standard deviation.

Directional forecasts are evaluated by the proportion of incorrect sign forecasts, de-

fined as

DLim = 1− 1

T

T∑
t=1

1{sign(Yi t) = sign(Ŷi t(m))} .

Assuming Hi t(m) = 1{sign(Yi t) = sign(Ŷi t(m))} ∼ Ber(pm), interest lies in verifying

whether pm = pPCR for the remaining forecasting strategies m. In other words, I test
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whether model m has the same probability of correctly classifying the sign of the next

realization relative to the PCR benchmark. Following Christoffersen (1998), a likelihood

ratio test is conducted to test the null hypothesis of pm = pPCR.

In addition to comparing forecasts across models, forecasts are compared against a

benchmark constructed from the unconditional distribution of the target variable. If a

model outperforms the unconditional benchmark, we say there is evidence of predictabil-

ity, that is, the conditioning set improves forecast accuracy. Conditional mean pre-

dictability is assessed by DM tests of each strategy relative to the recursively estimated

unconditional mean of each variable.

4.2 Empirical Results

4.2.1 Results for Selected Series

TABLE 1 ABOUT HERE

Table 1 reports the ratio of the MSE of each forecasting strategy relative to PCR for

each selected series and forecast horizon. Numbers below 1 imply that the strategy con-

sidered outperforms PCR. Best performing strategies for each series and forecast horizon

are highlighted in boldface. DM tests of superior predictive ability are carried out and

stars denote significance levels. CAVS-based forecasts are the MSE best for the majority

of series across all forecast horizons considered, substantially outperforming linear fore-

casts for the Federal funds, industrial production, nonfarm payroll employment, and the

S&P 500 uniformly across forecast horizons. In particular, for the Federal funds, the best

CAVS specification displays MSE reductions of about 15, 18, 6, and 3% relative to the

best linear model at h = 1, 3, 6, and 12 months ahead, respectively. CAVS-Ridge is the

best performing specification, selected as the MSE best across all series and forecast hori-

zon combinations 25% of the time, followed by CAVS-LASSO, PCR, and CAVS-PCR,

which are the MSE best 20, 17, and 15% of the time, respectively. For h = 1 month

ahead forecasting, Ridge is the best performing linear model for 5 out of the 10 selected

series, followed by LASSO and PCR, the best performing linear models for 4 and 1 series,
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respectively. CAVS-Ridge is the best performing CAVS specification for 5 out of the 10

selected series, followed by CAVS-PCR and CAVS-LASSO, the best performing CAVS

specifications for 3 and 2 series, respectively. This ranking remains largely unchanged

for h = 3 and h = 6 months ahead forecasts. For h = 12 months ahead, Ridge is the

best performing linear model for 7 out of 10 series, followed by PCR, the best performing

model for 3 series. LASSO is not the best linear model for any series. Among CAVS

specifications, CAVS-Ridge dominates CAVS-PCR and is the best CAVS specification

for 7 out of 10 series. CAVS-LASSO is the best performing CAVS specification for the

remaining 3 series.

Overall, the good performance of the baseline CAVS forecasts highlights that exploit-

ing directional and volatility predictability yields more accurate macroeconomic forecasts

for the selected series. In particular, CAVS-Ridge forecasts are, on average, 6.5% more

accurate than PCR forecasts, displaying the largest gains among all the baseline models

considered.

4.2.2 Results for all FRED-MD components

Next, I provide a comparison of CAVS-Ridge and PCR for all FRED-MD components.

FIGURE 2 ABOUT HERE

Figure 2 reports the ratios of the MSE of CAVS-Ridge relative to PCR for all FRED-

MD components, sorted by groups. Values below 1 indicate that CAVS-Ridge forecasts

outperforms PCR. Colors indicate significance at the 10% level (gray), 5% level (dark-

gray), or 1% level (black), based on a DM test of superior predictive ability. A number

of findings emerge from inspection of Figure 2. First, CAVS-Ridge outperforms PCR

for the majority of series and across all horizons, with particularly strong performance

for series that exhibit persistent volatility dynamics, such as interest rates, output, and

stocks series. Second, as the forecast horizon increases, CAVS-Ridge performance gains

become widespread, outperforming PCR for 53, 80, 67, and 75% of series for h = 1, 3, 6,

and 12 months ahead, respectively. Finally, CAVS-Ridge — and CAVS forecasts in

20



general — display poor performance for series that are not expressed in growth rates. In

particular, none of the series that are in the top 90% quantile of MSE ratios — i.e., series

for which CAVS provides MSE increases greater than 12.6% — are expressed in growth

rates. This is the case for all price series, most money, and a few labor series, all of which

are twice differenced. Additionally, some series in the interest and exchange rate groups

are expressed as spreads. Because spreads rarely change signs, CAVS forecasts generally

display poor performance for these series — in stark contrast to its good performance for

their growth rates counterparts. For example, CAVS-Ridge provides 33% more accurate

forecasts of the first differences of the 3-month treasury bill when compared to PCR.

By contrast, PCR provides 5% more accurate forecasts of the spread constructed as the

3-month treasury bill minus the federal funds rate relative to CAVS-Ridge. Overall, the

results highlight that CAVS-Ridge compares favorably to PCR, particularly for series

that display persistent volatility dynamics.

4.2.3 Componentwise Forecast Accuracy

Directional forecasts Directional forecasts of macroeconomic series are objects of

interest in their own right (see Pesaran and Timmerman, 1992; Sinclair et al., 2010,

among others). I compare the performance of directional forecasts implied by CAVS and

linear forecasts for the selected series.

TABLE 2 ABOUT HERE

Table 2 reports the directional loss ratio of each forecasting strategy relative to the

sign of the linear PCR forecast for each selected series and forecast horizon. Note that

signs of CAVS forecasts directly target the sign of the series considered by construction.

Numbers below 1 imply that the strategy considered outperforms PCR. Best performing

strategies for each series and forecast horizon are highlighted in boldface. Likelihood ratio

tests of superior predictive ability relative to the linear PCR benchmark, as described in

Section 4.1, are carried out and stars denote significance levels. CAVS-based directional

forecasts outperform their linear counterparts for the majority of series and across all

horizons considered. In particular, CAVS-based directional forecasts are more accurate
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for the four series for which CAVS display the largest gains relative to linear forecasts. For

most of the remaining series, CAVS-based directional forecasts perform on par with their

linear counterparts. In particular, CAVS directional forecasts are outperformed by linear

forecasts for the CPI and M2 series. This finding highlights that twice differencing may

hamper sign predictability, particularly at short forecast horizons. Moreover, CAVS-based

directional forecasts provide substantial improvements relative to their linear counterparts

at intermediate forecast horizons. The performance of all CAVS specifications is similar.

CAVS-Ridge is the best directional forecasting strategy for the most series across all

horizons, but performance gains relative to CAVS-LASSO and CAVS-PCR are modest.

Among directional forecasts based on linear models, Ridge and LASSO perform similarly

at h = 1 month ahead forecasting. PCR is the best performing linear model for horizons

greater than 1 month ahead. Overall, CAVS-based directional forecasts are more accurate

than their linear counterparts, highlighting that there is sign predictability in excess of

that implied by linear models for the conditional mean. In particular, the results show

that directly targeting the sign yields more accurate directional forecasts than forecasts

based on the sign of conditional mean forecasts.

Absolute value forecasts The performance of CAVS forecasts hinges on sign and

absolute value predictability. This section reports the results for the performance of

absolute value forecasts for the selected series.

TABLE 3 ABOUT HERE

Table 3 reports, for each forecasting strategy, selected series, and forecast horizon,

the MSE of absolute value forecasts relative to a PCR benchmark. I report results for

the absolute values of linear forecasts, as well as absolute value forecasts that directly

target the absolute values of the series considered. Numbers below 1 imply that the strat-

egy considered outperforms PCR. Best performing strategies for each series and forecast

horizon are highlighted in boldface. DM tests of superior predictive ability are carried

out and stars denote significance levels. Absolute value forecasts based on a standard

AR(4)-GARCH(1,1) are selected as the MSE best forecast for the majority of series across
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all forecast horizons. For h = 1 month ahead, GARCH-based forecasts exhibit sizable

performance gains relative to linear models for the absolute value. This finding high-

lights that standard time series models are able to accurately model conditional volatility

dynamics for macroeconomic series, and that the added value of exogenous predictors

is modest (see also Brownlees and Souza, 2020). As the forecast horizon increases, all

models that target the absolute value perform similarly, with GARCH-based forecasts

modestly outperforming their linear counterparts. Overall, Tables 2 and 3 show that

there is componentwise predictability in excess of that implied by linear models.

4.2.4 Additional Results

Alternative CAVS specifications I explore whether alternative CAVS specifications

can improve forecasting performance relative to the baseline CAVS models considered. In

particular, given the good performance of the GARCH(1,1) in forecasting absolute values,

I consider 4 absolute value forecasting strategies (PCR, ridge, LASSO and GARCH) and 3

sign forecasting strategies (PCR, ridge and LASSO), leading to 12 possible combinations

of signs and absolute values.

TABLE 4 ABOUT HERE

Table 4 reports the MSE of CAVS-based forecasts relative to that of PCR, for each of

the selected series and forecast horizons. The first and second rows denote the absolute

value and sign forecasting strategy, respectively. Numbers below 1 imply that the strat-

egy considered outperforms PCR. Best performing strategies for each series and forecast

horizon are highlighted in boldface. DM tests of superior predictive ability relative to

PCR are carried out, and stars denote significance levels. In line with Tables 2 and 3

, CAVS forecasts based on the standard GARCH (the best performing absolute value

model), and ridge (the best performing sign model), are the MSE best for the most series

and forecast horizon combinations considered. However, performance across all CAVS

models is similar, suggesting that standard CAVS specifications are sufficient to exploit

the relevant nonlinearities.
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Machine learning sign forecasts. I consider whether CAVS forecasts can be im-

proved upon by employing machine learning algorithms to forecast the signs.

TABLE 5 ABOUT HERE

Table 5 displays results for selected series. For each series and forecast horizon, I report

the ratios of the MSE of the CAVS specification considered relative to PCR forecasts.

Best performing methods according to each criteria are highlighted in boldface, and stars

represent significance according to a DM test, evaluated at the 5% significance level. The

most successful machine learning algorithm is random forests. CAVS forecasts where the

sign forecasts are constructed from random forests outperform baseline CAVS forecasts

for 2 out of the 10 series considered. Perhaps surprisingly, no other machine learning

algorithm outperforms the baseline CAVS forecasts. It is important to emphasize that I

consider standard implementations of the machine learning algorithms. It is well-known

that training machine learning models requires a degree of experimentation (White, 2006).

This implies, in particular, that careful tuning of each model’s parameters could improve

accuracy.

Models against an unconditional benchmark. I compare models in terms of their

ability to outperform forecasts based on the recursively estimated unconditional mean.

TABLE 6 ABOUT HERE

Table 6 reports, for each FRED-MD group and forecast horizon, the percentage of

series in each group for which each strategy outperforms the unconditional mean fore-

casts according to a DM test at the 5% significance level. Best performing methods

are highlighted in boldface. For h = 1 month ahead, both CAVS-based and linear fore-

casts outperform the unconditional mean benchmark for the majority of the series. In

particular, CAVS-based forecasts outperform the unconditional mean benchmark more

often than linear forecasts for labor, money, and interest rates series. In contrast, linear

forecasts outperform the unconditional mean benchmark more often than CAVS-based

forecasts for consumption and prices series. The performance of all models is similar

24



in the remaining series. For h > 1 months ahead, CAVS-based forecasts outperform

the unconditional mean more often than linear models for nearly all groups across all

horizons. In particular, at h = 6 months ahead, CAVS-based forecasts outperform the

unconditional mean for up to 40% of the Output series, in contrast to linear models,

which outperform the unconditional mean for up to 25% of the series. Overall, CAVS-

based forecasts outperform a unconditional mean benchmark for more series and across

longer forecast horizons than linear models.

Model selection and forecast averaging. I consider the performance of forecast

combinations, as described in Section 4.1.

TABLE 7 ABOUT HERE

Table 7 reports the MSE of each forecast combination strategy relative to that of PCR,

for each selected series and forecast horizon. Numbers below 1 imply that the strategy

considered outperforms PCR. Best performing strategies for each series and forecast hori-

zon are highlighted in boldface. DM tests of superior predictive ability relative to PCR

are carried out, and stars denote significance levels. Forecasts constructed by model av-

eraging generally outperform those constructed by model selection for both linear and

CAVS forecasts. Additionally, linear model averaging significantly outperforms PCR for

nearly all series at all horizons considered. Moreover, forecast combinations that include

CAVS forecasts outperform those based exclusively on linear models for the majority

of series considered, and are particularly well-suited for intermediate forecast horizons.

Finally, simple forecast combinations of linear and nonlinear models are a competitive

strategy. Overall, the findings reported in Table 7 are in line with those reported in Table

1, suggesting that series characteristics, rather than specific modelling choices, are the

determinants of whether CAVS will perform favorably compared to linear forecasts.
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5 Concluding Remarks

This paper introduces CAVS forecasts, a nonlinear framework that combines forecasts of

the sign and absolute value of a time series into conditional mean forecasts. In contrast

to linear models, in which variables that affect the mean of the target variable must affect

both its sign and absolute value, the proposed framework allows different predictors to

affect either the sign, the absolute value, or both.

I provide a number of theoretical results for CAVS forecasts. First, I show that the

conditional mean can be written as the product of MSE optimal forecasts of signs and

absolute values and a covariance term that can be explicitly modeled. If the underlying

DGP is additive with symmetric shocks, the covariance term is small relative to the

variance of the shocks and therefore may be ignored for forecasting purposes. Second, I

show that the performance of CAVS forecasts hinges on the ability to accurately forecast

each of the components of the target series. This result highlights that CAVS-based

forecasts are particularly suited for series that exhibit persistent volatility dynamics, and

hence absolute value predictability. Third, I study a nonlinear DGP in which variables

may affect signs and absolute values differently, and show that the MSE of the best linear

predictor increases quadratically with the degree of nonlinearity.

The proposed methodology is applied to forecast each of the components of the FRED-

MD dataset. I find that CAVS forecasts substantially outperform linear forecasts in series

that exhibit strong conditional volatility dynamics, such as Output and Interest Rate se-

ries, and the performance gains remain sizable across forecast horizons. Moreover, I find

that CAVS-based directional forecasts outperform linear forecasts for the majority of

the selected series considered, across all horizons. Additionally, I document that CAVS

forecasts outperform the recursively estimated unconditional mean benchmark for more

series and across longer horizons than linear forecasts. Finally, I find that forecast combi-

nations that include CAVS forecasts outperform those based exclusively on linear models

for the majority of series and across all horizons considered. Overall, the empirical appli-

cation highlights that exploiting directional and volatility predictability improves forecast

accuracy in macroeconomic series.
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Figure 1: Simulation Study

MSE ratios: nonlinearities in the absolute value
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MSE ratios: nonlinearities in the sign
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This figure illustrates the findings of the simulation study. It depicts the MSE ratios of each strategy

considered over the linear benchmark. The x-axis represents distance to linearity, which increases with

|κ − 1|. Solid lines represent sign forecasts based on correctly specified models, whereas dashed lines

represent sign forecasts based on a misspecified probit regression. Values below 1 indicate that the MSE

of a given strategy is smaller than that of the linear forecast.

30



Figure 2: MSE ratios for all FRED-MD components
h = 1
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This figure reports the ratio of the MSE of the equally weighted CAVS forecast relative to that of the

equally weighted linear forecast. Values below 1 indicate that CAVS forecasts outperform PCR forecasts.

Colors indicate that CAVS combinations outperform linear combinations at the 10% level (gray), 5%

level(dark-gray), or 1% level (black), based on a one-sided DM test.
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Table 1: Linear and CAVS Forecasts

Linear CAVS

h Series Ridge LASSO PCR Ridge LASSO

1

Fed Funds 0.725∗∗∗ 0.662∗∗∗ 0.692∗∗ 0.582∗∗∗ 0.573∗∗∗

Ind. Prod. 0.930∗∗∗ 0.982 0.891∗∗∗ 0.874∗∗∗ 0.894∗∗∗

Nonfarm Empl. 0.985 1.023 0.922∗ 0.941 0.926∗

S&P 500 0.954∗∗∗ 0.958∗∗ 1.011 0.944∗∗∗ 0.961∗∗

Unemp. 0.980 0.987 0.946 0.982 1.014
M2 (Real) 0.972 0.968 1.000 0.981 0.960
PPI: FG 0.967∗ 0.941∗∗ 1.134 0.995 0.995
10-Year T. Rate 0.948∗∗ 0.969 1.039 0.995 1.006
CPI 0.902∗∗∗ 0.874∗∗∗ 1.224 1.051 1.058
RPI ex. Rec. 1.019 1.038 1.069 1.122 1.138

3

Fed Funds 0.940∗ 0.971 0.763∗∗∗ 0.808∗∗∗ 0.818∗∗∗

Ind. Prod. 0.912∗∗∗ 0.960 0.878∗∗∗ 0.860∗∗∗ 0.874∗∗∗

Nonfarm Empl. 0.897∗∗∗ 0.947 0.854∗∗∗ 0.826∗∗∗ 0.856∗∗∗

S&P 500 0.988∗∗ 0.986∗∗ 1.000 0.983 0.980∗

Unemp. 1.022 1.051 1.047 1.088 1.100
M2 (Real) 0.963∗ 0.966 0.987 0.983 0.992
PPI: FG 0.997 1.000 0.975∗∗ 0.979∗∗ 0.978∗∗

10-Year T. Rate 0.970∗ 0.972 0.966∗ 0.947∗∗∗ 0.951∗∗

CPI 0.972∗∗ 0.971∗∗ 0.987 0.980 0.984
RPI ex. Rec. 1.006 1.020 0.990 1.002 1.017

6

Fed Funds 0.739∗∗∗ 0.815∗∗∗ 0.690∗∗∗ 0.708∗∗∗ 0.727∗∗∗

Ind. Prod. 0.980 0.994 0.950∗∗ 0.943∗∗∗ 0.964∗∗

Nonfarm Empl. 0.886∗∗∗ 0.915∗∗ 0.853∗∗∗ 0.807∗∗∗ 0.788∗∗∗

S&P 500 0.994 0.992 0.991 0.983∗ 0.982∗

Unemp. 1.006 1.011 1.107 1.091 1.105
M2 (Real) 0.916∗∗∗ 0.954∗ 0.953∗ 0.933∗ 0.932∗

PPI: FG 0.984∗∗ 0.984∗∗ 0.985 0.965∗∗∗ 0.964∗∗

10-Year T. Rate 0.973 0.970 0.973 0.940∗∗ 0.955
CPI 0.998 0.996 1.013 1.001 1.006
RPI ex. Rec. 1.002 1.003 1.002 1.004 1.015

12

Fed Funds 0.839∗∗∗ 0.902∗∗ 0.826∗∗∗ 0.807∗∗∗ 0.814∗∗∗

Ind. Prod. 0.921∗∗∗ 0.947∗∗∗ 0.923∗∗∗ 0.890∗∗∗ 0.892∗∗∗

Nonfarm Empl. 0.979 1.051 0.802∗∗∗ 0.797∗∗∗ 0.805∗∗∗

S&P 500 0.991∗∗ 0.992∗ 0.989 0.982∗∗ 0.982∗∗

Unemp. 1.023 1.019 1.081 1.071 1.094
M2 (Real) 0.924∗∗∗ 0.952∗∗ 1.014 0.968 0.992
PPI: FG 1.015 1.022 1.025 1.021 1.026
10-Year T. Rate 0.983∗ 0.990 1.015 0.985 0.991
CPI 1.001 1.008 1.027 1.015 1.015
RPI ex. Rec. 0.969∗∗ 0.973∗ 0.909∗∗∗ 0.900∗∗∗ 0.897∗∗∗

This table reports the MSE of each forecasting strategy (columns) relative to that of PCR, for
each of the selected series and forecast horizon. Numbers below 1 imply that the strategy considered
outperforms PCR. Best performing strategies for each series and forecast horizon are highlighted in
boldface. If no method is highlighted, the PCR benchmark is the best performing method. DM tests
of superior predictive ability relative to the PCR are carried out, and stars denote significance levels.
(∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01).
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Table 2: Directional Forecasts

Linear CAVS: Sign

h Series PCR(%DL) Ridge LASSO PCR Ridge LASSO

1

Fed Funds 40.24 0.994 0.970 0.994 0.976 0.947
Ind. Prod. 31.19 0.947 0.985 0.924 1.023 1.008
Nonfarm Empl. 11.43 0.958 0.938 1.000 0.938 0.875
S&P 500 36.67 0.968 0.942 0.994 0.935 0.942
Unemp. 57.38 1.004 1.021 0.938 0.967 0.992
M2 (Real) 26.67 0.893 0.884 1.045 0.911 0.902
PPI: FG 32.86 1.051 1.014 1.159 1.014 0.971
10-Year T. Rate 40.95 1.023 1.023 1.012 0.988 1.017
CPI 34.52 0.945 0.952 1.200 0.966 1.014
RPI ex. Rec. 25.71 0.991 0.972 0.963 0.954 0.954

3

Fed Funds 50.48 1.100 1.261 0.853∗∗∗ 0.915∗ 0.872∗∗∗

Ind. Prod. 33.49 1.000 1.007 0.914 1.007 1.014
Nonfarm Empl. 13.16 1.036 1.036 1.073 1.055 1.036
S&P 500 40.19 0.976 0.970 0.946 0.917 0.887∗

Unemp. 54.31 1.018 1.035 1.048 1.057 1.026
M2 (Real) 29.43 1.016 0.992 0.927 0.976 0.976
PPI: FG 51.91 1.018 1.037 0.977 0.954 0.954
10-Year T. Rate 52.87 1.109 1.059 0.977 0.941 0.946
CPI 51.20 1.000 1.009 0.855∗∗∗ 0.869∗∗∗ 0.855∗∗∗

RPI ex. Rec. 24.64 1.068 1.049 1.049 1.078 1.087

6

Fed Funds 52.53 1.009 1.018 0.917∗ 0.931 1.028
Ind. Prod. 35.66 0.980 0.986 0.966 0.966 0.973
Nonfarm Empl. 15.90 1.030 1.076 0.955 0.939 1.015
S&P 500 38.55 1.000 0.975 0.981 0.975 0.950
Unemp. 56.14 1.017 1.000 1.052 1.056 1.056
M2 (Real) 28.19 1.051 1.085 1.068 1.000 1.017
PPI: FG 52.29 0.982 1.000 0.940 0.931 0.949
10-Year T. Rate 50.84 1.043 0.962 0.976 0.948 0.957
CPI 51.57 1.000 0.977 0.897∗∗ 0.897∗∗ 0.902∗∗

RPI ex. Rec. 24.82 1.000 0.981 0.971 0.990 1.000

12

Fed Funds 50.86 1.014 1.202 1.067 1.091 1.168
Ind. Prod. 35.70 0.966 0.966 0.966 0.966 0.966
Nonfarm Empl. 20.29 0.928 0.928 0.940 0.916 0.928
S&P 500 37.65 0.974 1.006 0.974 0.961 0.987
Unemp. 58.19 1.071 1.042 1.042 1.034 1.038
M2 (Real) 32.27 0.955 1.053 0.977 0.992 0.992
PPI: FG 48.41 0.970 0.995 0.914∗ 0.944 0.934
10-Year T. Rate 46.45 1.074 1.021 1.095 1.105 1.084
CPI 46.70 1.000 1.031 0.932 0.901∗ 0.916
RPI ex. Rec. 26.41 0.981 1.009 0.981 0.981 1.009

This table reports, for each selected series and forecast horizon, the directional loss ratio of each sign
forecasting strategy relative to the sign of the linear PCR forecast. Linear sign forecasts are the signs of
the linear forecasts constructed, whereas the remaining forecasts are obtained by directly targeting the
sign of the series considered. Numbers below 1 imply that the strategy considered outperforms PCR.
Best performing strategies for each series and forecast horizon are highlighted in boldface. If no method
is highlighted, the PCR benchmark is the best performing method. Likelihood ratio tests of superior
predictive ability relative to the linear PCR benchmark, as described in Section 4.1, are carried out.
Stars denote significance levels. (∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01).
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Table 3: Absolute Value Forecasts

Linear CAVS: Absolute Value

h Series Ridge LASSO PCR Ridge LASSO GARCH

1

Fed Funds 0.679∗∗∗ 0.590∗∗∗ 0.862 0.752∗∗∗ 0.699∗∗∗ 0.568∗∗∗

Ind. Prod. 1.056 1.076 0.778∗∗∗ 0.714∗∗∗ 0.741∗∗∗ 0.807∗∗∗

Nonfarm Empl. 0.980 1.064 0.981 0.994 1.000 0.917∗

S&P 500 1.006 1.030 0.639∗∗∗ 0.636∗∗∗ 0.633∗∗∗ 0.637∗∗∗

Unemp. 1.086 1.111 0.862∗∗∗ 0.849∗∗∗ 0.860∗∗∗ 0.856∗∗∗

M2 (Real) 1.007 1.014 0.910∗ 0.902∗∗ 0.890∗∗ 0.925∗

PPI: FG 0.955∗∗ 0.927∗∗ 0.805∗∗∗ 0.794∗∗∗ 0.803∗∗∗ 0.700∗∗∗

10-Year T. Rate 1.006 1.002 0.833∗∗∗ 0.809∗∗∗ 0.797∗∗∗ 0.738∗∗∗

CPI 0.910∗∗ 0.894∗∗ 0.869 0.838∗∗ 0.866∗ 0.731∗∗∗

RPI ex. Rec. 0.994 1.007 0.768∗∗ 0.760∗∗ 0.751∗∗ 0.854

3

Fed Funds 0.946 0.935 0.941 0.890 0.955 0.810∗∗

Ind. Prod. 1.005 0.952∗ 0.775∗∗∗ 0.760∗∗∗ 0.777∗∗∗ 0.762∗∗∗

Nonfarm Empl. 0.921∗ 1.019 1.017 0.975 0.981 0.908∗

S&P 500 1.017 1.009 0.586∗∗∗ 0.582∗∗∗ 0.589∗∗∗ 0.578∗∗∗

Unemp. 1.055 1.072 0.704∗∗∗ 0.715∗∗∗ 0.725∗∗∗ 0.708∗∗∗

M2 (Real) 0.984 0.981 0.829∗∗∗ 0.806∗∗∗ 0.812∗∗∗ 0.857∗∗∗

PPI: FG 1.001 0.986∗∗ 0.537∗∗∗ 0.512∗∗∗ 0.515∗∗∗ 0.465∗∗∗

10-Year T. Rate 1.092 1.091 0.666∗∗∗ 0.627∗∗∗ 0.626∗∗∗ 0.564∗∗∗

CPI 1.023 1.017 0.580∗∗∗ 0.563∗∗∗ 0.578∗∗∗ 0.555∗∗∗

RPI ex. Rec. 0.998 1.005 0.911∗∗∗ 0.905∗∗∗ 0.904∗∗∗ 1.010

6

Fed Funds 0.975 0.938 0.913 0.909 0.995 0.951
Ind. Prod. 0.966∗∗ 0.954∗∗ 0.780∗∗∗ 0.779∗∗∗ 0.785∗∗∗ 0.810∗∗∗

Nonfarm Empl. 0.891∗∗∗ 0.840∗∗∗ 0.895∗ 0.866∗∗ 0.866∗∗ 0.835∗∗∗

S&P 500 1.019 1.031 0.588∗∗∗ 0.579∗∗∗ 0.581∗∗∗ 0.571∗∗∗

Unemp. 1.079 1.087 0.666∗∗∗ 0.652∗∗∗ 0.648∗∗∗ 0.652∗∗∗

M2 (Real) 0.952∗ 0.977 0.813∗∗∗ 0.783∗∗∗ 0.781∗∗∗ 0.805∗∗∗

PPI: FG 1.024 1.029 0.540∗∗∗ 0.536∗∗∗ 0.536∗∗∗ 0.491∗∗∗

10-Year T. Rate 0.950∗∗ 0.967∗ 0.622∗∗∗ 0.613∗∗∗ 0.649∗∗∗ 0.577∗∗∗

CPI 1.016 1.011 0.583∗∗∗ 0.576∗∗∗ 0.576∗∗∗ 0.582∗∗∗

RPI ex. Rec. 0.995∗ 0.986∗∗∗ 0.915∗∗∗ 0.914∗∗∗ 0.921∗∗∗ 0.954

12

Fed Funds 1.018 1.002 1.035 1.088 1.301 1.199
Ind. Prod. 1.047 1.026 0.948 0.894∗∗ 0.906∗∗ 0.952
Nonfarm Empl. 0.788∗∗∗ 0.777∗∗∗ 0.866∗∗ 0.861∗∗ 0.860∗∗ 0.842∗∗∗

S&P 500 1.018 1.013 0.609∗∗∗ 0.597∗∗∗ 0.602∗∗∗ 0.596∗∗∗

Unemp. 1.079 1.051 0.672∗∗∗ 0.651∗∗∗ 0.649∗∗∗ 0.642∗∗∗

M2 (Real) 0.940∗∗∗ 0.974 0.885∗∗∗ 0.848∗∗∗ 0.844∗∗∗ 0.820∗∗∗

PPI: FG 1.040 1.042 0.608∗∗∗ 0.602∗∗∗ 0.609∗∗∗ 0.581∗∗∗

10-Year T. Rate 1.052 1.039 0.596∗∗∗ 0.571∗∗∗ 0.592∗∗∗ 0.563∗∗∗

CPI 1.003 0.997 0.641∗∗∗ 0.622∗∗∗ 0.622∗∗∗ 0.630∗∗∗

RPI ex. Rec. 1.033 1.048 0.964 0.956 0.951 0.989

This table reports the MSE of absolute value forecasts, for each forecasting strategy relative to that
of PCR, for each of the selected series and forecast horizons. Absolute values of linear models are the
absolute values of the linear forecasts constructed. Numbers below 1 imply that the strategy considered
outperforms PCR. Best performing strategies for each series and forecast horizon are highlighted in
boldface. If no method is highlighted, the PCR benchmark is the best performing method. DM tests
of superior predictive ability relative to the PCR are carried out and stars denote significance levels.
(∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01).
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Table 5: Machine Learning Forecasts

Series PCR Ridge LASSO RF Adab. k-NN NN

Fed Funds 0.587 0.582 0.584 0.473 0.540 0.577 0.829
Ind. Prod. 0.877 0.874 0.903 0.880 0.892 0.937 1.115
Nonfarm Empl. 0.898 0.941 0.940 0.903 1.154 1.197 1.581
S&P 500 1.008∗∗∗ 0.944∗∗∗ 0.960∗∗∗ 0.986∗∗∗ 1.043∗∗∗ 0.988∗ 1.076
Unemp. 0.956 0.982 1.011 0.977 1.017 1.043 1.260
M2 (Real) 0.997 0.981 0.971 1.095 1.075 1.119 1.113
PPI: FG 1.142 0.995 0.996 1.215 1.256 1.233 1.173
10-Year T. Rate 1.034 0.995 1.009 1.018 1.025 1.036 1.251
CPI 1.193 1.051 1.068 1.107 1.123 1.165 1.212
RPI ex. Rec. 1.074 1.122 1.136 1.015 1.028 1.055 1.219

This table reports the results for select series. For each series, the table reports the ratios of the MSE of
the CAVS specification considered relative to PCR forecasts. The absolute values employed in this CAVS
forecast are obtained by Ridge, and the sign forecasts are based on the methods in the columns. Best
performing methods are highlighted in boldface and stars represent significance of a superior predictive
ability test relative to the PCR forecast at 5% significance level. If no method is highlighted, the PCR
benchmark is the best performing method.
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Table 6: Predictability

Linear CAVS

h Series PCR Ridge LASSO PCR Ridge LASSO

1

Output 37.50 68.75 50.00 68.75 68.75 68.75
Consumption 85.71 85.71 71.43 57.14 71.43 71.43
Labor 82.76 89.66 82.76 93.10 93.10 86.21
Money 50.00 57.14 57.14 35.71 64.29 57.14
Stocks 25.00 100.00 75.00 25.00 100.00 100.00
Interest and Exc. 45.00 55.00 45.00 60.00 95.00 85.00
Prices 85.00 95.00 95.00 45.00 60.00 65.00
FRED-MD 63.64 77.27 69.09 62.73 79.09 75.45

3

Output 12.50 43.75 31.25 56.25 62.50 50.00
Consumption 28.57 28.57 28.57 42.86 42.86 42.86
Labor 58.62 65.52 62.07 68.97 72.41 65.52
Money 0.00 7.14 7.14 7.14 7.14 7.14
Stocks 0.00 0.00 0.00 0.00 0.00 0.00
Interest and Exc. 30.00 35.00 35.00 40.00 35.00 35.00
Prices 0.00 0.00 0.00 0.00 0.00 0.00
FRED-MD 24.55 32.73 30.00 37.27 38.18 34.55

6

Output 18.75 25.00 18.75 25.00 43.75 37.50
Consumption 28.57 28.57 28.57 28.57 28.57 28.57
Labor 68.97 75.86 65.52 68.97 72.41 72.41
Money 0.00 0.00 0.00 0.00 0.00 0.00
Stocks 0.00 0.00 0.00 0.00 0.00 0.00
Interest and Exc. 25.00 30.00 30.00 35.00 35.00 25.00
Prices 0.00 0.00 0.00 0.00 0.00 0.00
FRED-MD 27.27 30.91 27.27 30.00 33.64 30.91

12

Output 0.00 6.25 6.25 6.25 37.50 31.25
Consumption 0.00 14.29 0.00 28.57 28.57 28.57
Labor 31.03 37.93 27.59 41.38 48.28 41.38
Money 7.14 7.14 7.14 7.14 7.14 7.14
Stocks 0.00 0.00 0.00 0.00 0.00 0.00
Interest and Exc. 25.00 25.00 20.00 30.00 25.00 25.00
Prices 5.00 5.00 0.00 5.00 5.00 0.00
FRED-MD 14.55 18.18 12.73 20.91 26.36 22.73

This table reports the results for each group in the FRED-MD, as well as for the dataset as a
whole. For each group and forecast horizon, this table reports the percentage of series within a group
for which each method outperforms an unconditional mean benchmark according to a DM test at the
5% significance level. Best performing methods for each group are highlighted in boldface.
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Table 7: Forecast Combinations

Model Selection Forecast Averaging

h Series Linear CAVS Linear CAVS Hybrid

1

Fed Funds 1.000 0.580∗∗∗ 0.719∗∗∗ 0.574∗∗∗ 0.538∗∗∗

Ind. Prod. 0.970∗∗ 0.880∗∗∗ 0.951∗∗∗ 0.867∗∗∗ 0.891∗∗∗

Nonfarm Empl. 1.000 0.946 0.953∗∗ 0.892∗∗ 0.901∗∗∗

S&P 500 0.969∗ 0.948∗∗∗ 0.964∗∗∗ 0.960∗∗∗ 0.951∗∗∗

Unemp. 0.987 0.996 0.969∗∗ 0.973 0.946∗∗

M2 (Real) 0.978 1.001 0.967∗∗ 0.956 0.973
PPI: FG 0.941∗∗ 0.981 0.961∗∗ 1.010 0.957∗∗

10-Year T. Rate 0.994 1.001 0.954∗∗∗ 1.000 0.940∗∗

CPI 0.874∗∗∗ 1.066 0.907∗∗∗ 1.084 0.946
RPI ex. Rec. 1.000 1.080 1.015 1.103 1.023

3

Fed Funds 1.000 0.792∗∗∗ 0.930∗∗ 0.785∗∗∗ 0.842∗∗∗

Ind. Prod. 0.951∗∗∗ 0.873∗∗∗ 0.939∗∗∗ 0.863∗∗∗ 0.897∗∗∗

Nonfarm Empl. 1.003 0.822∗∗∗ 0.910∗∗∗ 0.828∗∗∗ 0.843∗∗∗

S&P 500 0.995 0.987 0.990∗∗ 0.986 0.986∗

Unemp. 1.002 1.061 1.018 1.076 1.023
M2 (Real) 0.973 0.982 0.969∗ 0.981 0.964∗

PPI: FG 1.002 0.983 0.998 0.977∗∗ 0.986∗∗

10-Year T. Rate 0.991 0.967∗∗ 0.973∗∗ 0.950∗∗ 0.962∗∗∗

CPI 1.000 0.986 0.975∗∗ 0.979 0.973∗∗

RPI ex. Rec. 1.003 0.981 1.006 0.998 0.989

6

Fed Funds 0.807∗∗∗ 0.717∗∗∗ 0.796∗∗∗ 0.705∗∗∗ 0.730∗∗∗

Ind. Prod. 0.980 0.949∗∗ 0.985 0.945∗∗∗ 0.957∗∗∗

Nonfarm Empl. 0.902∗∗∗ 0.817∗∗∗ 0.904∗∗∗ 0.796∗∗∗ 0.818∗∗∗

S&P 500 1.000 0.986 0.994 0.983∗ 0.987∗

Unemp. 1.003 1.089 0.996 1.096 1.021
M2 (Real) 0.918∗∗∗ 0.935∗ 0.949∗∗∗ 0.936∗ 0.931∗∗

PPI: FG 0.999 0.970∗∗ 0.988∗∗ 0.970∗∗ 0.975∗∗∗

10-Year T. Rate 1.002 0.952∗ 0.965∗∗ 0.949∗ 0.946∗∗

CPI 0.998 1.008 0.997 1.002 0.993
RPI ex. Rec. 1.004 1.015 1.002 1.006 1.005

12

Fed Funds 1.000 0.820∗∗∗ 0.869∗∗∗ 0.807∗∗∗ 0.829∗∗∗

Ind. Prod. 0.953∗∗∗ 0.909∗∗∗ 0.943∗∗∗ 0.896∗∗∗ 0.920∗∗∗

Nonfarm Empl. 0.997 0.791∗∗∗ 0.984 0.789∗∗∗ 0.857∗∗∗

S&P 500 0.996∗ 0.978∗∗∗ 0.994∗∗ 0.984∗∗ 0.984∗∗∗

Unemp. 1.019 1.076 1.006 1.077 1.021
M2 (Real) 0.929∗∗∗ 0.948∗ 0.948∗∗∗ 0.984 0.938∗∗∗

PPI: FG 1.000 1.023 1.010 1.020 1.010
10-Year T. Rate 0.994 0.992 0.987∗ 0.993 0.984
CPI 1.003 1.014 1.002 1.018 0.999
RPI ex. Rec. 0.980 0.911∗∗ 0.977∗∗ 0.899∗∗∗ 0.935∗∗∗

This table reports the MSE of each forecast combination strategy (columns) relative to that of PCR,
for each of the selected series and forecast horizon. Numbers below 1 imply that the strategy considered
outperforms PCR. Best performing strategies for each series and forecast horizon are highlighted in
boldface. If no method is highlighted, the PCR benchmark is the best performing method. DM tests
of superior predictive ability relative to the PCR are carried out, and stars denote significance level.
(∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01).
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A Proofs

Proof of propositions 1 and 2. We need to show that

E
[(
Yt − µCAVS(Xt)

)2]
≤ σ2u + a1E

[(
µS(Xt)−m∗S(Xt)

)2
+
(
µA(Xt)−m∗A(Xt)

)2]
where a1 is a constant that depends on E[Y 2

t ]. Let M = (µA(Xt) , m
∗
S(Xt))

′ and

ε =
(
µS(Xt)−m∗S(Xt), µA(Xt)−m∗A(Xt)

)′
. First, note that

||M ′ε||22 =
(
µA(Xt)(µS(Xt)−m∗S(Xt)) +m∗S(Xt)(µA(Xt)−m∗A(Xt)

)2
,

and

||M ||22 = µA(Xt)
2 +m∗S(Xt)

2 .

Note that |m∗S(Xt)| ≤ 1. Additionally,

||ε||22 =
(
µS(Xt)−m∗S(Xt)

)2
+
(
µA(Xt)−m∗A(Xt)

)2
.

Applying Cauchy-Schwarz’s inequality, we have

||M ′ε||2 ≤ ||M ||22||ε||22
≤ (1 + µA(Xt)

2)||ε||22

=
(
1 + µA(Xt)

2
)((

µS(Xt)−m∗S(Xt)
)2

+
(
µA(Xt)−m∗A(Xt)

)2)
Note that µA(Xt) = E

[
|Yt|
∣∣∣Xt

]
. Next, because Var(|Yt| |Xt) = E[Y 2

t |Xt] − µA(Xt)
2 ≥ 0, It

follows that µA(Xt)
2 ≤ E[Y 2

t |Xt]. Hence

E
[(
Yt − µCAVS(Xt)

)2]
= σ2u + E

[(
µ(Xt)−m∗A(Xt)m

∗
S(Xt)− c(Xt)

)2]
= σ2u + E

[(
µA(Xt)µS(Xt)−m∗A(Xt)m

∗
S(Xt)

)2]
= σ2u + E

[(
µA(Xt)

(
µS(Xt)−m∗S(Xt)

)
+m∗S(Xt)

(
µA(Xt)−m∗A(Xt)

))2]
≤ σ2u + E

[
||M ′ε||2

]
≤ σ2u + E

[(
1 + E[Y 2

t |Xt]
)((

µS(Xt)−m∗S(Xt)
)2

+
(
µA(Xt)−m∗A(Xt)

)2)]
≤ σ2u + a1E

[(
µS(Xt)−m∗S(Xt)

)2
+
(
µA(Xt)−m∗A(Xt)

)2]
where the last line follows from the assumption that E[Y 2

t ] < ∞ and E[Yt|Xt] < ∞, which

together imply that E[Y 2
t |Xt] ≤ a0 <∞ for all Xt with positive measure.
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Proof of Proposition 2. Note that

E
[(
Yt −m∗A(Xt)m

∗
S(Xt)

)2]
= σ2u + E

[(
µ(Xt)− µCAVS(Xt) + µCAVS(Xt)−m∗A(Xt)m

∗
S(Xt)

)2]
= σ2u + E

[(
µ(Xt)− µCAVS(Xt) + c(Xt)

)2]
Next using the fact that (a− b)2 ≤ 2(a2 + b2), we write

E
[(
µ(Xt)− µCAVS(Xt) + c(Xt)

)2]
≤ 2E

[(
µ(Xt)− µCAVS(Xt)

)2
+ c(Xt)

2
]

Applying Proposition 1, we have

E
[(
Yt −m∗A(Xt)m

∗
S(Xt)

)2]
≤ σ2u + 2E

[
c(Xt)

2
]

+ a2E
[(
µS(Xt)−m∗S(Xt)

)2
+
(
µA(Xt)−m∗A(Xt)

)2]

Proof of proposition 3. (To be completed)

Let

Yt = µ(Xt) + σuut ut ∼ D(0, 1) ,

and denote by µA(Xt) = E
[∣∣µ(Xt) + σuut

∣∣∣∣∣Xt

]
and by µS(Xt) = E

[
sign(Yt)|Xt

]
. We will show

that (
µ(Xt)− µA(Xt)µS(Xt)

)2
≤ γσ2u ,

which implies that E
[(
µ(Xt)− µA(Xt)µS(Xt)

)2]
≤ γσ2u. Let z = µ(Xt)

σu
, and note that

µA(Xt) = σuEu
[∣∣z + ut

∣∣], and

µS(Xt) = 1− 2FD

(
− µ(Xt)

σu

)
= 1− 2FD(−z)

where Eu denotes expectation taken with respect to D, the distribution of ut. In addition, note

that z is measurable with respect to Xt. Our goal is to bound

d(z) =
(
µ(Xt)− µA(Xt)µS(Xt)

)2
=
(
σuz − σuEu

[
|z + ut|

](
1− 2F−1D (−z)

))2
= σ2u

(
z − Eu

[
|z + ut|

](
1− 2F−1D (−z)

))2
.

Applying Lemma 1 we obtain

d(z) ≤ σ2M (z∗)6
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We can numerically compute M and z∗ for different distributions. In particular, we numerically
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evaluate g′′′(z∗) for the t− distribution to obtain that |g′′′(z∗)| ≤ 3, which implies γ ≤ 1/2. A

more general proof that does not require numerical evaluation (and hence does not assume the

t distribution) is being completed.

For the Gaussian case, note that

E
[
(Yt − µA(Xt)µS(Xt))

2
]

= σ2u + E
[
(µ(Xt)− µA(Xt)µS(Xt))

2
]

= σ2u + E
[
Cov

(
|Yt|, sign(Yt)

∣∣∣Xt

)2]

Hence, clearly

E
[(
Yt − µA(Xt)µS(Xt)

)2]
E
[(
Yt − µ(Xt)

)2] = 1 +
1

σ2u
E
[
Cov

(
|Yt|, sign(Yt)

∣∣∣Xt

)2]

Next, we compute the conditional covariance between the signs and absolute values of Yt. We

must evaluate the expectations. First, note that Yt
∣∣Xt ∼ N(µ(Xt), σ

2
u). It follows that |Yt|

∣∣Xt

is the absolute value of a Gaussian random variable, and hence it is distributed as a Folded

Normal. The expected value of |Yt|
∣∣Xt can be directly computed as:

E
[
|Yt|
∣∣∣Xt

]
= 2σuφ

(µ(Xt)

σu

)
+ µ(Xt)

(
2Φ
(µ(Xt)

σu

)
− 1
)

In addition, noting that

P
(
µ(Xt) + ut+1 ≥ 0

∣∣Xt

)
= Φ

(µ(Xt)

σu

)
the expected value of sign(Yt)|Xt is given by

Et
[
sign(Yt+1)

∣∣Xt

]
= 2Φ

(µ(Xt)

σu

)
− 1

Applying the definition of covariance, we obtain

Cov
(
|Yt|, sign(Yt)

∣∣∣Xt

)
= µ(Xt)− 2σuφ

(µ(Xt)

σu

)(
2Φ
(µ(Xt)

σu

)
− 1
)
− µ(Xt)

(
2Φ
(µ(Xt)

σu

)
− 1
)2

= µ(Xt)− 2σuφ
(µ(Xt)

σu

)(
2Φ
(µ(Xt)

σu

)
− 1
)
− µ(Xt)

(
1− 4Φ

(µ(Xt)

σu

)(
1− Φ

(µ(Xt)

σu

))
= 4µ(Xt)

(
Φ
(µ(Xt)

σu

)(
1− Φ

(µ(Xt)

σu

))
− 2σuφ

(µ(Xt)

σu

)(
2Φ
(µ(Xt)

σu

)
− 1
)

Setting z = µ(Xt)
σu

, we can write

Cov
(
|Yt|, sign(Yt)

∣∣∣Xt

)
= 4zσu

(
Φ(z)(1− Φ(z))

)
− 2σuφ(z)

(
2Φ(z)− 1

)
= 2σu

(
2zΦ(z)(1− Φ(z))− 2φ(z)Φ(z) + φ(z)

)
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Clearly, this function is 0 at z = 0. Additionally, it is easy to see that as |z| → ∞, this function

goes to 0. Scaling the covariance by the irreducible MSE, we obtain:

1

σ2u
E
[
(Yt − µA(Xt)µS(Xt))

2
]

= 1 +
1

σ2u
E
[
Cov

(
|Yt|, sign(Yt)

∣∣∣Xt

)2]
= 1 + E

[4σ2u
(
2zΦ(z)(1− Φ(z))− 2φ(z)Φ(z) + φ(z)

)2
σ2u

]
= 1 + 4E

[(
2zΦ(z)(1− Φ(z))− 2φ(z)Φ(z) + φ(z)

)2]
≤ 1 + 4(2z̃Φ(z∗)(1− Φ(z∗))− 2φ(z∗)Φ(z∗) + φ(z∗)

)2
≈ 1.04187

where z∗ = arg maxz∈R
(
2zΦ(z)(1− Φ(z))− 2φ(z)Φ(z) + φ(z)

)2
, evaluated numerically.

Proof of proposition 4. Let X ∼ D(0,Σ), with Σ a diagonal matrix with elemtens given by σ21

and σ22. Write

Yt = |x1κβ1 + x2β2|sign(x1β1 + x2β2) + ut , ut ∼ D(0, 1)

The OLS estimator for β∗1 is given by

β∗1 =
1

σ21
E
[
x1|x1κβ1 + x2β2|sign(x1β1 + x2β2)

]
=

1

σ21
E
[
|x1||x1κβ1 + x2β2|sign(x1)sign(x1β1 + x2β2)

]
=

1

σ21
E
[
|x21κβ1 + x1x2β2|sign(x21β1 + x1x2β2)

]
=

1

σ21
E
[
(x21κβ1 + x1x2β2)sign(x21β

2
1κ+ x1x2β1β2(1 + k) + x22β2)

]

Alternatively, for β∗2 , we have

β∗2 =
1

σ22
E
[
x2|x1κβ1 + x2β2|sign(x1β1 + x2β2)

]
=

1

σ22
E
[
|x2||x1κβ1 + x2β2|sign(x2)sign(x1β1 + x2β2)

]
=

1

σ22
E
[
|x1x2κβ1 + x22β2|sign(x2x1β1 + x22β2)

]
=

1

σ22
E
[
(x1x2κβ1 + x22β2)sign(x1x2β1 + x22β2)sign(x1x2κβ1 + x22β2)

]
=

1

σ22
E
[
(x1x2κβ1 + x22β2)sign(x21β

2
1κ+ x1x2β1β2(1 + k) + x22β2)

]
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So

β∗1 =
1

σ21
E
[
(x21κβ1 + x1x2β2)sign(x21β

2
1κ+ x1x2β1β2(1 + k) + x22β2)

]
, and

β∗2 =
1

σ22
E
[
(x1x2κβ1 + x22β2)sign(x21β

2
1κ+ x1x2β1β2(1 + k) + x22β2)

]

Further, assuming βi = β for all i:

β∗1 =
1

σ21
βE
[
(x21κ+ x1x2)sign(x21κ+ x1x2(1 + κ) + x22)

]
, and

β∗2 =
1

σ22
βE
[
(x1x2κ+ x22)sign(x21κ+ x1x2(1 + κ) + x22)

]
Let S(κ) = sign(x21κ + x1x2(1 + κ) + x22) and denote by a = E

[
x21S(κ)

]
, b = E

[
x22S(κ)

]
and

c = E
[
x1x2S(κ)

]
.

E
[(
Yt −X ′tβ∗

)2]
− σ2u = E

[(
β(x1κ+ x2)S(κ)− β x1

σ21
E
[
(x21κ+ x1x2)S(κ)

]
− β x2

σ22
E
[
(x1x2κ+ x22)S(κ)

])2]

and we can write the scaled excess MSE as:

β−2
(
E
[(
Yt −X ′tβ∗

)2]
− σ2u

)
= E

[(
(x1κ+ x2)S(κ)− x1

σ21
E
[
(x21κ+ x1x2)S(κ)

]
− x2
σ22

E
[
(x1x2κ+ x22)S(κ)

])2]
= E

[(
S(κ)x1κ+ S(κ)x2 −

x1
σ21
κa− c

σ21
x1 −

c

σ22
κx2 −

x2
σ22
b
)2]

= E
[(
S(κ)(x1κ+ x2)︸ ︷︷ ︸

(A)

−κ
(x1
σ21
a+

c

σ22
x2
)

︸ ︷︷ ︸
(B)

−
( c
σ21
x1 +

x2
σ22
b
)

︸ ︷︷ ︸
(C)

)2]

Term by term, first A2, using that E
[
x1x2

]
= 0:

E
[
A2
]

= E
[
S(κ)2(x1κ+ x2)

2
]

= E
[
(x1κ+ x2)

2
]

= κ2σ21 + σ22

Then, B2:

E
[
B2
]

= κ2E
[(x1
σ21
a+

c

σ22
x2

)2]
= κ2

(a2
σ21

+
c2

σ22

)
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For C2:

E
[
C2
]

= E
[
(
c

σ21
x1 +

x2
σ22
b)2
]

=
c2

σ21
+
b2

σ22

Then for AB

E
[
AB
]

= κE
[
S(κ)(x1κ+ x2)(

x1
σ21
a+

c

σ22
x2)
]

= κE
[
S(κ)(σ−21 x21κa+ x1x2κcσ

−2
2 + x2x1σ

−2
1 a+ cσ−22 x22)

]
= κ

(
σ−21 κaE

[
S(κ)x21

]
+ κcσ−22 E

[
S(κ)x1x2

]
+ σ−21 aE

[
S(κ)x2x1

]
+ cσ−22 E

[
S(κ)x22

])
= κ

(
σ−21 κa2 + κc2σ−22 + σ−21 ac+ bcσ−22

)
= κ2

(a2
σ21

+
c2

σ22

)
+ κc

( a
σ21

+
b

σ22

)

For BC

E
[
BC

]
= κE

[( a
σ21
x1 +

c

σ22
x2
)( c
σ21
x1 +

b

σ22
x2
)]

= κE
[(ac
σ41
x21 +

ab

σ21σ
2
2

x1x2 +
c2

σ22σ
2
1

x2x1 +
bc

σ42
x22
)]

= κc
( a
σ21

+
b

σ22

)

For AC

E
[
AC
]

= E
[
S(κ)(x1κ+ x2)

(x1
σ21
c+

x2
σ22
b
)]

= E
[
S(κ)

(x21
σ21
κc+ x1

x2
σ22
κb+ x2

x1
σ21
c+

x22
σ22
b
)]

=
1

σ21
κcE

[
S(κ)x21

]
+

1

σ22
κbE

[
S(κ)x1x2

]
+

1

σ21
cE
[
S(κ)x2x1

]
+

1

σ22
bE
[
S(κ)x22

])
=

1

σ21
κac+

1

σ22
κbc+

1

σ21
c2 +

1

σ22
b2

= κc
( a
σ21

+
b

σ22

)
+
c2

σ21
+
b2

σ22

Combining everything and noting that E
[
AB
]

= E
[
B2
]

+ E
[
BC

]
and E

[
AC
]

= E
[
C2
]

+
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E
[
BC

]
, we have

β−2
(
E
[(
Yt −X ′tβ∗

)2]
− σ2u

)
= κ2

( 1

σ21
(σ41 − a2)−

c2

σ22

)
− 2κc

( a
σ21

+
b

σ22

)
+

1

σ22
(σ42 − b2)−

c2

σ21

Plugging the values for a, b and c, and denoting the excess risk by R(κ), we have

R(κ) = κ2
( 1

σ21

(
σ41 − E[x21S(κ)]2

)
− E[x1x2S(κ)]2

σ22

)
− 2κE[x1x2S(κ)]

(E[x21S(κ)]

σ21
+

E[x22S(κ)]

σ22

)
+

1

σ22
(σ42 − E[x22S(κ)]2)− E[x1x2S(κ)]2

σ21

= κ2
(
σ21 −

E[x21S(κ)]2

σ21
− E[x1x2S(κ)]2

σ22

)
− 2κE[x1x2S(κ)]

(E[x21S(κ)]

σ21
+

E[x22S(κ)]

σ22

)
+ σ22 −

E[x22S(κ)]2

σ22
− E[x1x2S(κ)]2

σ21

Proof of Corollary 2. (To be completed) Let

R(κ) = κ2
(
σ21 −

E[x21S(κ)]2

σ21
− E[x1x2S(κ)]2

σ22

)
− 2κE[x1x2S(κ)]

(E[x21S(κ)]

σ21
+

E[x22S(κ)]

σ22

)
+ σ22 −

E[x22S(κ)]2

σ22
− E[x1x2S(κ)]2

σ21

We need to show that R(κ) ∈ Ω(κ2), that is, we need to show that there exists a constant a3 > 0

and κ0 such R(κ) > a3κ
2 for every κ > κ0. Consider

R(κ)

κ2
=
(
σ21 −

E[x21S(κ)]2

σ21
− E[x1x2S(κ)]2

σ22

)
− 2

κ
E[x1x2S(κ)]

(E[x21S(κ)]

σ21
+

E[x22S(κ)]

σ22

)
+

1

κ2

(
σ22 −

E[x22S(κ)]2

σ22
− E[x1x2S(κ)]2

σ21

)
and assume σ1 = σ2. Note that |E[x21S(κ)]| ≤ σ21, and the same holds for x2. It follows that,

for large enough κ,

R(κ)

κ2
=
(
σ21 −

E[x21S(κ)]2

σ21
− E[x1x2S(κ)]2

σ21

)
+ o(κ−1) + o(κ−2)

It remains to be shown that

E[x1x2S(κ)]2 < 1− E[x21S(κ)]2

(To be completed)
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Lemma 1. Let u ∼ D(0, 1) denote a random variable with mean zero and unit variance and

define h(x) : R→ R+, v(x) : R→ [−1, 1] and g(x) : R→ R as

h(x) = Eu[|x+ u|]

v(x) = 1− 2FD(−x) , and,

g(x) = h(x)v(x) .

If D is symmetric about 0 and |g′′′(x)| ≤
√
M for all x, then

d(x) = (x− g(x))2 ≤M (z∗)6
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Proof. First, note that if D is symmetric about 0, then FD(0) = 1/2 and v(0) = g(0) = 0, which

in turn implies d(0) = 0. Moreover, note that

h(x) =

∫ ∞
−∞

(x+ u)sign(x+ u)fud(u)

=

∫ ∞
−x

(x+ u)fud(u)−
∫ −x
−∞

(x+ u)fud(u)

=

∫ ∞
−x

ufud(u)−
∫ −x
−∞

ufud(u) +

∫ ∞
−x

xfud(u)−
∫ −x
−∞

xfud(u)

=

∫ ∞
−x

ufud(u)−
∫ −x
−∞

ufud(u) + x
(
1− 2FD(−x)

)
=

∫ ∞
−x

ufud(u)−
∫ −x
−∞

ufud(u) + xv(x)

= 2

∫ ∞
−x

ufud(u) + xv(x).

Hence we can write:

d(x) = (x− v(x)h(x))2

=
(
x− 2v(x)

∫ ∞
−x

ufud(u)− xv(x)2
))2

=
(
x(1− v(x)2)− 2v(x)

∫ ∞
−x

ufud(u)
))2

Noting that limx→∞ v(x)2 = 1 and that limx→∞
∫∞
−x = E[u] = 0, it follows that limx→∞ d(x) = 0

Hence we know that d(0) = 0 , d(x) ≥ 0 for any x and limx→∞ d(x) = 0. Therefore, there is

some x∗ ∈ arg max d(x). Taking derivatives with respect to x yields

d′(x) = 2(x− g(x))(g′(x)− 1)

Clearly, d′(x) = 0 at x = g(x) and g′(x) = 1. Let x∗ = {x : g′(x) = 1} and consider a Taylor

46



expansion of g(0) around g(x∗):

g(0) = g(x∗) + g′(x∗)(−x∗) +

∞∑
n=2

g(n)(x∗)

n!
(−x∗)n

x∗ = g(x∗) +R2(0)

where the second line follows from the fact that g′(x∗) = 1 and g(0) = 0, and denoting R2(0) =∑∞
n=2

g(n)(x∗)
n! (−x∗)n. It follows from Taylor’s theorem that if |g′′′(x∗)| ≤

√
M , then |R2(0)| ≤

√
M |x∗|3

6 , which implies the result.
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