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Abstract
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1 Introduction

The Great Recession and the COVID-19 pandemic have gone hand-in-hand with spec-

tacular spikes in virtually all measures of US uncertainty (Bloom (2014), Barrero and

Bloom (2020)). Following the seminal papers by Bloom (2009) and Fernández-Villaverde

et al. (2011), numerous studies have investigated the importance of uncertainty shocks for

the business cycle. This paper makes three contributions to this literature. First, using

a nonlinear vector autoregression (VAR) with a non-recursive identification strategy, we

show that an equal-sized uncertainty shock generates a larger contraction in real activ-

ity when growth is low (as in recessions) than when growth is high (as in expansions).

Second, we demonstrate that a dynamic stochastic general equilibrium (DSGE) model

approximated to third order around its risky steady state is able to capture such state-

dependent responses to an uncertainty shock. In contrast, any state-dependent effects of

this shock are absent when using the deterministic steady state for the third order ap-

proximation, as commonly done in the literature. Third, relying on this methodological

contribution, we use an estimated New Keynesian model to examine the economic mech-

anisms behind our new VAR evidence. The results reveal that the traditional aggregate

supply (AS) relation implies an upward nominal pricing bias for firms, as emphasized

in Fernández-Villaverde et al. (2015), but that this bias is state-dependent and essential

to understand the asymmetric responses to uncertainty shocks. As a result, our analysis

delivers an empirically credible micro-founded model that can be used to study the role of

monetary policy for addressing the state-dependent effects of an uncertainty shock across

the business cycle.

Let us elaborate on our contributions. First, we estimate a nonlinear VAR using

quarterly US data to assess whether an uncertainty shock has real effects that depend

on the stance of the business cycle. To allow for potentially state-dependent effects to a

shock, we extend the standard linear VAR by adding quadratic terms that involve the

growth rate of real GDP and a proxy for financial uncertainty, which are both endogenous

in the VAR. Uncertainty shocks are identified using a non-recursive strategy that combines

event, correlation, and sign restrictions using the frequentist approach in Ludvigson et al.

(2021).1 Our main empirical result is that an uncertainty shock of the same size generates

a larger response of real activity during recessions than in expansions. This finding is in

line with previous contributions on the nonlinear effects of an uncertainty shock (see, for

instance, Caggiano et al. (2014), Alessandri and Mumtaz (2019), Cacciatore and Ravenna

1We focus on the effects of financial uncertainty, which has recently been identified as a key driver of
the US business cycle (Ludvigson et al. (2021)). Other VAR investigations on the business cycle effects of
financial uncertainty are Bloom (2009), Caggiano et al. (2014), Leduc and Liu (2016), Basu and Bundick
(2017), and Angelini et al. (2019).
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(2020)). Importantly, our empirical finding is based on a non-recursive identification

strategy, and is therefore not subject to the critique in Ludvigson et al. (2021) of the

standard recursive identification scheme often used to identify exogenous variations in

uncertainty.

Our second contribution is methodological and relates to the ability of nonlinear DSGE

models to generate state-dependent effects of an uncertainty shock. These models are

widely used in the literature to study the economic mechanisms behind the real effects

of an uncertainty shock when solved by a third order approximation around the deter-

ministic steady state, as in Fernández-Villaverde et al. (2011), Born and Pfeifer (2014,

2020), Fernández-Villaverde et al. (2015), and Basu and Bundick (2017) among many

others. This is a fruitful way to proceed to understand the effects of uncertainty shocks

on average. However, it does not allow the researcher to investigate the potentially state-

dependent effects of an uncertainty shock, because only the level of a given variable and

terms that are linear in the states are risk-corrected in this approximation (Cacciatore

and Ravenna (2020)). One way to address this shortcoming is to apply a fourth-order

approximation around the deterministic steady state, because it also risk corrects terms

that are quadratic in the states and hence allows for state-dependent effects of an uncer-

tainty shock, as exploited in Cacciatore and Ravenna (2020) and Diercks et al. (2020).

But going beyond a third order approximation substantially increases the execution time

and the memory requirement when solving DSGE models, which may limit the applica-

bility of this solution when the desire is to formally estimate these models. We therefore

propose a computationally less demanding alternative by simply moving the approxima-

tion point for the third order approximation to the risky steady state.2 This long-term

equilibrium point is characterized by allowing agents to respond to uncertainty, whereas

any effects of uncertainty is absent in the deterministic steady state. The appealing fea-

ture of this modification is that all linear and nonlinear terms in the approximation are

adjusted for risk, enabling us to capture potentially different effects of an uncertainty

shock in expansions and recessions. To ensure stability, we also provide a pruned ver-

sion of this approximation and its closed-form solution for unconditional first and second

moments as well as impulse response functions by using the results in Andreasen et al.

(2018). Hence, our contribution makes it feasible to estimate nonlinear DSGE models

with state-dependent effects of an uncertainty shock using techniques that are commonly

applied in the literature.

Building on this methodological contribution, in the third part of the paper we work

with a version of the New Keynesian model proposed by Basu and Bundick (2017) and

refined in Basu and Bundick (2018) to understand why risk matters more in recessions

2Solutions around the risky steady state are discussed in Coeurdacier et al. (2011) for a first-order
approximation and in de Groot (2013) for approximations up to second order. However, the methods
adopted in these papers to compute approximations around the risky steady state differ from the approach
applied in the present paper.
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than in expansions. Key features of this model are recursive preferences as in Epstein and

Zin (1989), an uncertainty shock in the disturbance to the household’s utility function,

and nominal price stickiness as in Rotemberg (1982). We extend the model by adding

consumption habits, the flexible formulation of recursive preferences in Andreasen and

Jørgensen (2020), and cost-push shocks. The model is then estimated by matching styl-

ized unconditional moments jointly with our nonlinear VAR impulse response functions

to an uncertainty shock in both recessions and expansions. The estimation results show

that this New Keynesian model goes a long way in reproducing the different responses

to an uncertainty shock in expansions and recessions. Crucially, these differences in the

impulse response functions arise from different initial conditions as captured by differ-

ent values of the states, which through the model’s endogenous propagation mechanisms

make an uncertainty shock more severe in recessions than in expansions. In other words,

we do not rely on any form of occasionally binding constraints as in Cacciatore and

Ravenna (2020) or an unanticipated switch in the structural parameters attached to dif-

ferent subsamples to generate asymmetric responses to an uncertainty shock. A further

investigation of the model reveals that these asymmetries are primarily generated by

the nonlinear terms in the aggregate supply (or Phillips) curve that lead firms for given

marginal costs to set higher nominal prices than what would be optimal without uncer-

tainty. Hence, our results show that in response to an uncertainty shock firms bias their

prices upward relatively more in recessions than in expansions, and therefore display a

state-contingent upward nominal pricing bias. To understand this effect, recall that firms

can reset their prices in every period with sticky prices as in Rotemberg (1982) but they

face costs when doing so. In this setting, the conditional volatility of inflation affects

the current price, because it is optimal for firms to set higher prices after an uncertainty

shock to avoid large expensive future increases in prices. That is, firms simply smooth out

their pricing bias. Two effects help to make this pricing bias stronger in recessions than

expansions. First, inflation volatility is higher in recessions than in expansions. Second,

firms discount future profits by the consumption-based stochastic discount factor, which

has a higher level in recessions than in expansions due to lower consumption and higher

marginal utility when growth is low. This implies that firms assign more weight to future

profits in recessions, which increases their pricing bias. We finally show that this expla-

nation of a state-contingent upward nominal pricing bias is consistent with evidence for

firms’price markup, which increases by more in recessions than in expansions following

an uncertainty shock.

Our findings point to the role of uncertainty surrounding inflation expectations as an

important determinant of firms’price setting and, in turn, of business cycle fluctuations.

Hence, our empirical evidence connects with research pointing to uncertainty around

expected inflation as a robust fact across the data (Weber et al. (2022)), and with con-

tributions investigating the relation between inflation dispersion and firms’price setting
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based on survey data (Meeks and Monti (2019)) and micro data (Bunn et al. (2022)).

The presence of a state-dependent upward nominal pricing bias has also important

implications for monetary policy. We illustrate this by considering what would happen

if the central bank were to adopt a more accommodating monetary policy to stabilize

output growth. Following an uncertainty shock, we find that such a change in monetary

policy hardly affects the drop in output when the economy prior to the uncertainty shock

is in recession. On the other hand, when the economy prior to the uncertainty shock is

in expansion, we find that the same change in monetary policy is much more successful

in off-setting the negative effect on output of the uncertainty shock. We argue that this

difference is due to the upward nominal pricing bias, which is more powerful in recessions

than in expansions.

The rest of this paper is organized as follows. Section 2 provides our VAR evidence,

while Section 3 presents the New Keynesian model. The proposed model solution is

described in Section 4, and we discuss our empirical findings for the New Keynesian model

in Section 5. Section 6 investigates the key mechanism behind the state-dependent effects

of an uncertainty shock and presents our policy application, while Section 7 concludes.

2 VAR Evidence

This section presents our reduced-form evidence for state-dependent effects of an un-

certainty shock. We introduce a nonlinear VAR in Section 2.1, discuss identification in

Section 2.2, and present the impulse responses in Section 2.3. Various robustness checks

are discussed in Section 2.4.

2.1 An Interacted VAR

We consider the vector of macro variablesYt = [log V XOt, logGDPt, logCt, log It, logHt,

logPt, Rt]
′
of dimension n × 1, where V XOt is the implied volatility index in the stock

market (the S&P 100), GDPt is output, Ct is consumption, It is investment, Ht is hours

worked, Pt is the price level, and Rt is the policy rate.3 The vector Yt evolves as specified

by the following interacted VAR (IVAR)

Yt = α+

L∑
j=1

AjYt−j +

L∑
j=1

cj log V XOt−j ×∆ logGDPt−j + ηt, (1)

where α and cj have dimension n× 1, Aj has dimension n× n, and the n× 1 vector of

residuals ηt ∼ IID (0,Ω). Unlike linear VARs, our IVAR includes the quadratic terms

log V XOt−j×∆ logGDPt−j to capture potentially state-contingent effects of higher uncer-

tainty for various levels of the growth rate of real GDP, i.e.,∆ logGDPt ≡ log(GDPt/GDPt−1).

3The definition of these variables follows the one used by Basu and Bundick (2017) for their VAR.

4



We estimate this IVAR with four lags by OLS using quarterly US data from 1962Q3 to

2017Q4.4 Given that the VXO is unavailable before 1986, we follow Bloom (2009) and

combine the VXO by the monthly volatility of daily returns in the S&P 500 before 1986.

Our sample includes the zero lower bound for the monetary policy rate from 2008Q4 to

2015Q4. Hence, we replace the federal funds rate in this period by the shadow rate of

Wu and Xia (2016) to account for unconventional monetary policy (for an alternative

framework that explicitly models the zero lower bound, see Arouba et al. (2022)). The

estimation results clearly favor our IVAR specification against a linear VAR, as we reject

the joint null hypothesis of cj = 0 for j = {1, 2, 3, 4} using a likelihood ratio test with
a residual-based bootstrapped p-value of 0.005. Table 1 reports stylized unconditional

moments for the growth rates of the four variables in the VAR and IVAR that are related

to economic activity. Both models match the empirical means and standard deviations,

and hence show no sign of overfitting. We also see that the IVAR is marginally better at

generating negative skewness and excess kurtosis than the linear VAR. Thus, the pres-

ence of nonlinear terms allow the IVAR to better capture higher order moments of the

empirical distribution than implied by the linear VAR.

A note on an alternative nonlinear framework recently put forth by the literature

is in order. Arouba et al. (2017) propose (univariate) quadratic autoregressive (QAR)

models to investigate the match between nonlinearities in macroeconomic time series and

a nonlinear DSGE framework approximated at a second order. Our paper is concerned

with uncertainty shocks, which require a third order approximation of the nonlinear

framework. Simulations documented in our Appendix confirm that our parsimonious

IVAR offers a good approximation of the dynamic responses of the endogenous variables

of our DSGE framework to an uncertainty shock.

2.2 An Uncertainty Shock: The Identification Strategy

Following Bloom (2009), many contributions in the literature have identified an uncer-

tainty shock by imposing zero-restrictions on the impact of macroeconomic shocks on

uncertainty or on the impact of an uncertainty shock on the business cycle. However,

this recursive identification strategy has recently been questioned by Ludvigson et al.

(2021), who find a non-zero contemporaneous correlation between uncertainty and the

business cycle. We therefore follow Ludvigson et al. (2021) and use a combination of

event restrictions and constraints from external variables, which we supplement with sign

restrictions to obtain a robust non-recursive identification of an uncertainty shock. To

4Alternatives to the IVAR include the quadratic autoregression in Aruoba et al. (2017) and the
nonlinear factor model in Guerron-Quintana et al. (2021) that are both motivated from a second-order
pruned perturbation approximation. We prefer the IVAR because it is computationally easier to estimate
than the factor model in Guerron-Quintana et al. (2021), which requires the use of a particle filter. To
our knowledge, the quadratic autoregression in Aruoba et al. (2017) is currently only developed for
univariate time series.
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Table 1: VARs: Unconditional Moments for Economic Activity
This table reports unconditional moments for the growth rate in output, consumption, investment, and

hours worked using US data from 1962Q3 to 2017Q4. The corresponding moments in the linear VAR

and the IVAR are obtained from 500 simulated time series of the same lenght as in the empirical sample.

Data Linear VAR IVAR

Mean Std. Skew. Kurt. Mean Std. Skew. Kurt. Mean Std. Skew. Kurt.

Growth rates:

Output 0.39 0.81 -0.36 4.75 0.38 0.81 -0.004 3.23 0.38 0.81 -0.02 3.30

Consumption 0.40 0.46 -0.27 4.01 0.39 0.45 -0.09 3.20 0.39 0.45 -0.13 3.20

Investment 0.69 2.06 -1.15 6.70 0.63 2.07 -0.13 3.52 0.64 2.00 -0.26 3.73

Hours worked 0.04 0.66 -0.92 5.18 0.04 0.66 -0.02 3.10 0.04 0.63 -0.26 3.50

present this alternative, let et denote the structural shocks with zero mean and covariance

matrix In. The mapping between the reduced-form residuals ηt and et in the IVAR is

ηt = Bet, where B = PQ is of dimension n×n, P is a lower-triangular Cholesky factor

of Ω with non-negative diagonal elements, and Q is any orthonormal rotation matrix

(i.e., QQ′ = In) that implies positive diagonal elements of B. Let B denote the set that
contains the infinitely many solutions ofB that satisfy the n(n+1)/2 restrictions implied

by the covariance matrix, i.e., Ω = BB′. Given that not all of these mathematically ac-

ceptable solutions are interesting from an economic standpoint, we impose restrictions to

get the subset of economically admissible solutions.5

The first set of restrictions we impose relate to specific events or narratives following

the work of Antolín-Díaz and Rubio-Ramírez (2018) and Ludvigson et al. (2021). We

consider the dates located by Bloom (2009) that coincide with spikes in the financial

uncertainty proxy of Ludvigson et al. (2021). In addition, we also include the events

in 1979Q4 (the Volcker experiment) and 2011Q3 (debt ceiling crisis), as emphasized in

Ludvigson et al. (2021), as well as 2000Q2 (collapse of the dot-com bubble), 2010Q2

(Euro area debt crisis and fears about a global slowdown), and 2016Q1 (end of the zero-

lower bound period and fears about China’s economic fragility) with clear spikes in the

financial uncertainty proxy of Ludvigson et al. (2021). At each of the dates, we require

that realized uncertainty shocks eunc,t exceed their 50th percentile p (eunc,t, 50) across all

unconstrained solutions in B, except on 1987Q4 (Black Monday) and 2008Q4 (collapse
of Lehman Brothers) where the uncertainty shock should exceed its 75th percentile as

in Ludvigson et al. (2021). The selected dates with spikes in financial uncertainty are

plotted in Figure 1.

Our second set of restrictions impose two external constraints on eunc,t following the

5The set B is constructed using the algorithm in Rubio-Ramírez et al. (2010). That is, we initialize B
to be the unique lower-triangular Cholesky factor P of Ω and then rotate B by generating K = 500, 000
random orthogonal matrices Q. Each rotation matrix is obtained by drawing an n× n matrixM from
N (0, In), where Q is the orthonormal matrix in the QR decomposition of M . Thus, the K different
matrices B imply K different unconstrained structural shocks et(B) = B−1ηt for t = 1, ..., T .
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Figure 1: Spikes in Financial Uncertainty
The red line denotes financial volatility according to the VXO since 1986, and the realized volatility in
the S&P 500 before 1986 as in Bloom (2009). The blue line is the measure of financial uncertainty in
Ludvigson et al. (2021) for a forecast horizon of one month. Vertical black lines denote the events that
are used to identify an uncertainty shock as reported in Table 2.
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work of Ludvigson et al. (2021). The first requirement is that the correlation between

eunc,t and the stock market return Rm
t must be negative and lower than the median value

of this correlation across all unconstrained solutions in B.6 As pointed out by Ludvigson
et al. (2021), the negative correlation between financial uncertainty and stock market

returns represents an empirical regularity that is implied by a large body of macro-

finance theoretical models, the Basu and Bundick (2017) model being one of them. The

second constraint requires that the correlation between eunc,t and the growth rate in the

real gold price ∆gt must be higher than the median value of this correlation across all

unconstrained solutions in B. The theoretical justification for this constraint is that gold

is a safe asset whose demand by investors increases in presence of uncertainty.7

To further sharpen the identification, we require a non-positive response of GDP,

investment, consumption, and hours on impact following a positive uncertainty shock.

This is consistent with a large number of theoretical and empirical investigations of

an uncertainty shock (see, e.g., Bloom (2014) for a survey). As shown in the Online

Appendix, these sign restrictions only help to narrow the identified set but have hardly

6In our case, this implies that the correlation between Rmt and eunc,t must be less than or equal to
−0.15, which is a more selective requirement than imposed in Ludvigson et al. (2021).

7For our model, this means that the correlation between ∆gt and eunc,t must be bigger than or equal
to 0.03, which also is slightly more selective than in Ludvigson et al. (2021).
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Table 2: Identifying Restrictions for An Uncertainty Shock
This table summarizes the identifying assumptions for an uncertainty shock in the IVAR. For event
restrictions, the notation > p(eUnc,t, 50th) indicates that the uncertainty shock at a given date should
exceed the 50th percentile of its distribution. The sources for each of these event constraints are from
Bloom (2009) and Ludvigson et al. (2021) (LMN). Excluded dates from Bloom (2009) are 1963Q4
(Assassination of JFK), 1997Q4 (Asian crisis), and 2003Q1 (Iraq invasion).

Conditions on eunc,t Source
Event Restrictions
1966Q3: Vietnam buildup > p(eunc,t, 50th) Bloom
1970Q2: Cambodia and Kent state > p(eunc,t, 50th) Bloom
1973Q4: OPEC I, Arab-Israeli War > p(eunc,t, 50th) Bloom
1974Q3: Franklin National > p(eunc,t, 50th) Bloom
1978Q4: OPEC II > p(eunc,t, 50th) Bloom
1979Q4: Volcker experiment > p(eunc,t, 50th) LMN
1980Q1: Afghanistan, Iran hostages > p(eunc,t, 50th) Bloom
1982Q4: Monetary policy turning point > p(eunc,t, 50th) Bloom
1987Q4: Black Monday > p(eunc,t, 75th) Bloom & LMN
1990Q4: Gulf War I > p(eunc,t, 50th) Bloom
1998Q3: Russian, LTCM default > p(eunc,t, 50th) Bloom
2000Q2: Collapse of the dot-com bubble > p(eunc,t, 50th) LMN extra
2001Q3: 9/11 terrorist attacks > p(eunc,t, 50th) Bloom
2002Q3: Worldcom, Enron > p(eunc,t, 50th) Bloom
2008Q4: Great recession > p(eunc,t, 75th) Bloom & LMN
2010Q2: European debt crisis > peunc,t, 50th) LMN extra
2011Q3: Debt ceiling crisis > p(eunc,t, 50th) LMN
2016Q1: FFR liftoff and China > p(eunc,t, 50th) Bloom (update)

External Restrictions
Stock market return, rmt 6 p(corr(eunc,t, r

m
t ), 50th) LMN

Log difference of real gold price, ∆gt > p(corr(eunc,t,∆gt), 50th) LMN

Sign Restrictions on Impact
GDP < 0
Investment < 0
Consumption < 0
Hours < 0

any effect on the median target of the identified set, which we will focus on in our

subsequent analysis. For completeness, all the identification restrictions are summarized

in Table 2.

2.3 Impulse Response Functions

We quantify the business cycle effects of an uncertainty shock by computing generalized

impulse response functions (GIRFs) that account for the nonlinearities introduced by the

term log V XOt−j ×∆ logGDPt−j in the IVAR (Koop et al. (1996)). The GIRFs for Yt
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at horizon h to an uncertainty shock of size δunc in period t is defined as

GIRFY(h, δunc,$t−1) ≡ E [Yt+h|δunc,$t−1]− E [Yt+h|$t−1] . (2)

These impulse responses depend on the state of the economy, which is captured by the

initial conditions $t−1 ≡ {Yt−1, ...,Yt−L}. We are interested in exploring the effects of
an uncertainty shock across the business cycle, and we therefore compute GIRFs when

the initial condition for real GDP growth is below its 10th percentile (i.e., deep recessions)

and above its 90th percentile (i.e., strong expansions). All rotations of B in B are equally
likely based on the data, but Fry and Pagan (2011) suggest to select the rotation BMT

that delivers the GIRFs with the smallest distance to the median of the impulse responses

in the identified set.8 These median target (MT) responses are reported in the left column

in Figure 2. For a positive one-standard deviation uncertainty shock (δunc = 1), we find

the familiar drop in real activity for several quarters after the shock in both recessions

and expansions. However, the key focus of the present paper is the finding that this drop

in activity is larger and more persistent in deep recessions (the red dotted lines) than

in strong expansions (the blue lines), although the size of the uncertainty shock is the

same. For instance, in recessions the peak responses of output, investment, and hours

are −0.28%, −0.87%, and −0.45%, respectively, whereas the corresponding responses in

expansions are only −0.19%, −0.35%, and −0.23%. Turning to the nominal side, the

responses for prices are slightly positive in expansions and slightly negative in recessions.

For the monetary policy rate, we find a clear negative effect of an uncertainty shock, with

effects that are stronger in recessions than in expansions.9

The charts to the right in Figure 2 report the distance between the MT responses

in recessions relative to the MT responses in expansions, where the shaded gray and

light gray areas report the bootstrapped 68% and 90% confidence intervals, respectively.

These confidence intervals reveal that the different responses in expansions and recessions

in general are significant at the 68% level, and for investment, hours, prices, and the policy

rate we even have significance at the 90% level.10

8There are two reasons to focus on a single model instead of the entire identified set. First, our goal
is to estimate a DSGE model by matching impulse responses and we therefore have to focus on a single
set of responses from the IVAR. Second, the confidence bands for the GIRFs can be computed by a
standard bootstrap algorithm when focusing on a single model.

9Our Appendix documents the outcome of a Monte Carlo exercise that simulate pseudo-data with
the DSGE model presented in Section 3 and identifies uncertainty shocks with the identification strategy
employed with actual data. This exercise shows that the IVAR is able to recover the true impulse
responses to an uncertainty shock.
10Our online Appendix shows that the response of real activity to an uncertainty shock is stronger in

recessions than in expansions according to all retained rotations belonging to the set B.
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Figure 2: Nonlinear VAR: Impulse Responses to an Uncertainty Shock
The charts to the left show the median target responses in the IVAR in deep recessions and strong
expansions following a positive one-standard deviation uncertainty shock. The charts to the right show
the difference between these responses in (deep recessions minus strong expansions) in addition to the 68
and 90 percent confidence intervals, which are estimated by a residual-based bootstrap (with 1,000 draws)
when conditioning on the median target responses. All responses are shown in percentage deviations,
except for the policy rate where changes in percentage points are reported.
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2.4 Robustness Analysis

This new result is robust to a wide range of modifications and extensions of the IVAR

presented above. In the Online Appendix, we show robustness to i) re-estimating the
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IVAR using data from 1987Q1 to 2017Q4 to only use the offi cial VXO measure and

exclude the Great Inflation period; ii) replacing the shadow rate of Wu and Xia (2016)

by the federal funds rate throughout the sample and adding the 10-year Treasury zero-

coupon yield (or, alternatively, the 1-year one) to capture effects of quantitative easing

and forward guidance; iii) adding a series for realized skewness in the S&P500 to control

for skewness shocks as discussed in Salgado et al. (2019); iv) using a real-time business

cycle indicator as given by the purchasing managers index instead of real GDP growth for

the interactive term in the IVAR; v) defining the expansionary state as episodes where

real GDP growth is above its 10th percentile (i.e., outside deep recessions), vi) identifying

an uncertainty shock using a proxy-SVAR, where the instrument is a dummy variable

capturing large spikes in financial markets similarly to Bloom (2009) and Carriero et al.

(2015); and vii) controlling for first-moment financial shocks by including the credit spread

between BAA and AAA yields for bonds with more than 20 years to maturity.11

3 A New Keynesian Model

This section presents a New Keynesian DSGE model to explain why an uncertainty shock

has larger effects in recessions than in expansions. Our starting point is the model by

Basu and Bundick (2017) and its refinement in Basu and Bundick (2018). We extend

this model along three dimensions. First, external consumption habits are included to

capture a hump-shaded response in consumption to an uncertainty shock. Second, the

flexible formulation of recursive preferences in Andreasen and Jørgensen (2020) is adopted

to keep risk aversion at a low and plausible level. Finally, standard cost-push shocks

are introduced to match the comovement between consumption and output across the

business cycle. Given that the basic structure of this New Keynesian model is widely

known, we only present its crucial parts.

3.1 Households

We consider an infinitely lived representative household with recursive preferences as

in Epstein and Zin (1989) and Weil (1990). Using the formulation in Rudebusch and

Swanson (2012), the value function Vt is given by

Vt =

{
(1− β)ut + β(Et

[
V 1−α
t+1

]
)

1
1−α when ut > 0 for all t

(1− β)ut − β(Et
[
(−Vt+1)1−α]) 1

1−α when ut < 0 for all t
, (3)

11Alternative indicators of financial stress are the national financial conditions index (NFCI) provided
by the Federal Reserve Bank of Chicago and the excess bond premium used in Gilchrist and Zakrajšek
(2012). The former is available from 1971, while the latter starts in 1973. Our sample covers the period
1962Q3-2017Q4, which is the reason we use the BAA-AAA spread that is available for our entire sample.
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where ut is the utility function and Et [·] is the conditional expectation in period t. The
parameter α ∈ R \ {1} captures households’appetite for the resolution of uncertainty,
implying preferences for early (late) resolution of uncertainty if α > 0 (α < 0) for ut > 0,

and vice versa when ut < 0. Andreasen and Jørgensen (2020) further argue that the size

of this timing attitude is proportional to α, meaning that numerically larger values of α

imply stronger preferences for early (late) resolution of uncertainty.

The expression for households’utility at time t is

ut ≡ a1−σ
t

(
1

1− σ
(
(Ct − bCt−1)η (1−Nt,)

1−η)1−σ
+ u0

)
, (4)

which depends on habit-adjusted consumption Ct− bCt−1 and leisure 1−Nt. As in Basu

and Bundick (2018), the preference shock at appears within the utility function to ensure

that the weights in (3) sum to one as required to avoid an asymptote in the policy function

when the intertemporal elasticity of substitution approaches one. The process for at is

given by log at+1 = ρa log at + σa,tεa,t+1 where εa,t+1 ∼ NID (0, 1) and σa,t introduces

stochastic volatility. Its process is given by σa,t+1 = (1 − ρσ) + ρσσa,t + σσεσ,t+1, where

εσ,t+1 ∼ NID (0, 1) and uncorrelated with εa,t+1 at all leads and lags. The constant u0

captures utility from government spending and goods produced and consumed within the

household. As shown by Andreasen and Jørgensen (2020), the main reason for including

u0 is to separately control the level of the utility function and hence disentangle the

timing attitude α from relative risk aversion (RRA), which otherwise are tightly linked

in the standard formulation of recursive preferences in Epstein and Zin (1989) and Weil

(1990). To see this, note that (3) and (4) imply

RRA =
η

1− b

[
σ + α (1− σ)

((Css − bCss)η (1−Nss)
1−η)

1−σ

((Css − bCss)η (1−Nss)1−η)
1−σ

+ (1− σ)u0

]
,

at the deterministic steady state (ss) when accounting for the endogenous labor supply

(see Swanson (2018), who builds on Swanson (2012)). Hence, a high timing attitude α

does not necessarily imply a high RRA, which is in contrast to the standard specification

with u0 = 0 where RRA = η
1−b (σ + α (1− σ)).

The household receives labor income Wt for each unit of labor Nt supplied to the

intermediate firms. These firms are owned by the household that therefore holds their

equity shares St, which have the price PE
t and pay dividends DE

t . The household also

holds one-period real bonds with the gross return RR
t as issued by the firms, and it holds

nominal bonds issued by the government with the gross return Rt.
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3.2 Firms

The final output Yt is produced by a representative final good producer using the pro-

duction function Yt =
(∫ 1

0
Yt (i)(θµ,t−1)/θµ,t di

)θµ,t/(θµ,t−1)

, where θµ,t captures a time-

varying substitution elasticity between the intermediate goods Yt(i). It is assumed that

log (θµ,t+1/θµ) = ρθµ log(θµ,t/θµ) + σθµεθ,t+1, where εθ,t+1 ∼ NID (0, 1). Cost minimiza-

tion implies that Yt(i) =
[
Pt(i)
Pt

]−θµ,t
Yt, where Pt ≡

(∫ 1

0
Pt (i)1−θµ,t di

) 1
1−θµ,t denotes the

aggregate price level and Pt (i) is the price of the ith good.

Intermediate firms produce Yt(i) using the Cobb-Douglas production function with

fixed costs, i.e., Yt(i) = (Kt−1(i)Ut(i))
αp (ZtNt(i))

1−αp − Φ, where Kt−1(i) is the capital

stock, Ut(i) is the utilization rate, and Zt captures productivity shocks as logZt+1 =

ρZ logZt + σZεZ,t+1 with εZ,t+1 ∼ NID (0, 1). The capital stock evolves as Kt(i) =(
1− δ(Ut(i))− φK

2
(It(i)/Kt−1(i)− δ)2

)
Kt(i) + It(i), where φK introduces adjustment

costs and It(i) is investment. The depreciation costs are given by δ(Ut(i)) = δ+δ1(Ut(i)−
Uss) + δ2

2
(Ut(i) − Uss)2. Intermediate firms operate in a market with monopolistic com-

petition and face quadratic adjustment costs as in Rotemberg (1982). The expression for

real dividends therefore reads

Dt(i)

Pt
=

[
Pt(i)

Pt

]1−θµ,t
Yt −

Wt

Pt
Nt(i)− It(i)−

φP
2

(
Pt(i)

ΠssPt−1(i)
− 1

)2

Yt

where Wt is the wage and Πss denotes inflation in the deterministic steady state. Each

intermediate firm finances a fraction ν of its capital stock by issuing one-period riskless

bonds, i.e., Bt(i) = νKt−1(i). As a result, the real dividend payments to equity holders

are DE
t (i) /Pt = Dt (i) /Pt − ν(Kt−1 (i)−Kt (i) /RR

t ).

3.3 Monetary Policy and Stock Market Volatility

The central bank adjusts the nominal interest rate Rt to stabilize inflation around its

target Πss and output growth according to the rule

ln(Rt/Rss) = ζΠ log (Πt/Πss) + ζ∆Y log(Yt/Yt−1), (5)

where Πt ≡ Pt/Pt−1 denotes gross inflation.12

As in Basu and Bundick (2017), the gross stock market return is defined as Rm
t =(

DE
t + PE

t

)
/PE

t−1. The model-implied measure for stock market volatility is then given

by V XOt = 100
√

4× Vt
[
Rm
t+1

]
, where Vt

[
Rm
t+1

]
is the quarterly conditional variance of

Rm
t+1.

12Unreported results show no evidence of interest rate smoothing in (5) when using the estimator
presented in Section 5.1.
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3.4 Equilibrium

We focus on the symmetric equilibrium, where all intermediate firms choose the same

price Pt(i) = Pt, employ the same amount of labor Nt(i) = Nt, and choose the same level

of capital Kt(i) = Kt and utilization rate Ut(i) = Ut. Consequently, all firms have the

same cash flows and are financed with the same mix of bonds and equity. The markup

of the price in relation to marginal cost is µt = 1/Ξt, where Ξt denotes the marginal cost

of producing one additional unit by the intermediate firm.

4 Model Solution

This section derives a third order approximation to DSGE models around the risky steady

state and study some of its implications. Section 4.1 describes a general class of DSGE

models that includes the New Keynesian model presented above. The third order Taylor

approximation around the risky steady state is derived in Section 4.2, and we discuss a

pruned version of this approximation in Section 4.3. The accuracy and execution time of

various approximations are studied in Section 4.4.

4.1 General Model

We consider the class of models where the equilibrium conditions are given by

Et [f (yt+1,yt,xt+1,xt)] = 0. (6)

The states appear in xt with dimension nx × 1, while the control variables of dimension

ny ×1 are collected in yt, with n ≡ nx + ny. We also let xt ≡
[

x′1,t x′2,t

]′
, where x1,t

refers to the endogenous states and x2,t to the exogenous states, which evolve as

x2,t+1 = h2 (x2,t) + η̃εt+1, (7)

where h2 (x2,t) is a known transition function, εt+1 ∼ IID (0, Inε), and nε is the number

of elements in the vector of shocks εt+1.13 The assumption that the innovations enter

linearly in (7) is without loss of generality, because the state vector may be extended

to account for nonlinearities between xt and εt+1, as needed when including stochastic

volatility in the exogenous states (see Andreasen (2012) for further details). The exact

solution to this class of models is given by

yt = g (xt) (8)

13All eigenvalues of ∂h2 (x2,t) /∂x2,t must have modulus less than one, implying that trends may only
be included if the model after re-scaling has an equivalent representation without trending variables.
The procedure of re-scaling a DSGE model with trends is carefully described in King et al. (2002).
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xt+1 = h (xt) + ηεt+1 (9)

where η ≡
[

0 η̃′
]′
has dimension nx×nε and h (·) ≡

[
h1 (xt) h2 (x2,t)

]′
with h1 (xt)

describing the law of motion for the endogenous states. The functions g (·) and h (·) are
generally unknown and must be approximated.

4.2 A Third Order Approximation at the Risky Steady State

Let xt = x̄ denote the risky steady state. This is the long-term equilibrium for the

economy in the absence of shocks, but agents account for the probability distribution

of structural shocks in the future. This makes the risky steady state different from the

widely used deterministic steady state, where agents do not account for the probability

distribution of the structural shocks. As we will show below, the main advantage of using

the risky steady state is that all terms in the third-order approximation are adjusted for

risk, which is benefical when studying uncertainty shocks, whereas only the level and

terms that are linear in the states are adjusted when using the deterministic steady state.

The considered third order approximation around x̄ is given by

yt = g (x̄) + gx (x̄) (xt − x̄) + 1
2
gxx (x̄) (xt − x̄)⊗2 + 1

6
gxxx (x̄) (xt − x̄)⊗3

xt+1 = h (x̄) + hx (x̄) (xt − x̄) + 1
2
hxx (x̄) (xt − x̄)⊗2 + 1

6
hxxx (x̄) (xt − x̄)⊗3 + ηεt+1,

(10)

where (xt − x̄)⊗2≡ (xt − x̄)⊗ (xt − x̄) and (xt − x̄)⊗3≡ (xt − x̄)⊗2⊗ (xt − x̄). The first-

order derivative of g (xt) with respect to xt is denoted gx (x̄) when evaluated at x̄. A

similar notation is used for h (xt) and for higher-order derivatives.14 The procedure we

use to compute the required derivatives of g (·) and h (·) is similar to the one applied in
Collard and Juillard (2001a) for a simple endowment model and in Collard and Juillard

(2001b) for a DSGE model solved by a second-order approximation. Hence, we substitute

(8) and (9) into (6) to get

Et [F (xt, εt+1)] ≡ Et
[
f
(
g
(
h (xt) + ηεt+1

)
,g (xt) ,h (xt) + ηεt+1,xt

)]
= 0. (11)

We then compute a third order Taylor approximation of F (xt, εt+1) at xt = x̄ and

εt+1 = 0. Evaluating the expectations with respect to terms that involve εt+1 and using

the method of undetermined coeffi cients, we obtain the following conditions (derived in

our Online Appendix):

[F (x̄,0)]i +
1

2
[Fεε (x̄,0)]iφ1φ2 [V [εt+1]]

φ1
φ2

+
1

6
[Fεεε (x̄,0)]iφ1φ2φ3

[
m3

ε

]φ1
φ2φ3

= 0 (12)

14Note that x̄ is a fixed-point in h (·), i.e. h (x̄) = x̄, and that the ergodic mean E [xt] generally differs

from the risky steady state x̄ because E [xt+1 − x̄] = E
[

1
2hxx (x̄) (xt − x̄)

⊗2
+ 1

6hxxx (x̄) (xt − x̄)
⊗3
]
6=

0.
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[Fx (x̄,0)]iα1 +
3

6
[Fεεx (x̄,0)]iφ1φ2α3 [V [εt+1]]

φ1
φ2

= 0 (13)

[Fxx (x̄,0)]iα1α2 = 0 (14)

[Fxxx (x̄,0)]iα1α2α3 = 0, (15)

where the tensor notation is used with i = {1, 2, ..., n}, φ1, φ2, φ3 = {1, 2, ..., nε}, and
α1, α2, α3 = {1, 2, ..., nx}. Also, V [εt+1] is the covariance matrix of εt+1 (which equals

Inε), and m3
ε with dimensions nε × nε × nε contains all third order moments of εt+1. The

derivatives of F (xt, εt+1) are denoted with subscripts and evaluated at the risky steady

state, e.g., Fx (x̄,0) = ∂F (xt, εt+1) /∂x′t|xt=x̄,εt+1=0, and depend on derivatives of the g-

and h-functions.

To understand the implications of (12) to (15), let us first consider the case without

uncertainty by letting V [εt+1] = 0 and m3 (εt+1) = 0 to obtain the certainty equiva-

lence solution. The n × 1 equations in (12) then simplifies to [F (x̄,0)]i = 0, implying

that x̄ = xss and ȳ = yss. We also have that (13) reduces to [Fx (xss,0)]iα1 = 0, which

gives the well-known quadratic system for computing the first-order derivatives gx (xss)

and hx (xss), as shown in Schmitt-Grohe and Uribe (2004). Moreover, (14) reduces to

[Fxx (xss,0)]iα1α2 = 0 and (15) to [Fxxx (xss,0)]iα1α2α3 = 0, which are the linear sys-

tems exploited by the standard perturbation method to compute the second-order terms

gxx (xss) and hxx (xss) and the third order terms gxxx (xss) and hxxx (xss), respectively

(see Schmitt-Grohe and Uribe (2004) and Andreasen (2012)). Thus, without uncertainty,

the conditions in (12) to (15) are identical to those used by the standard perturbation

method to obtain the certainty equivalent part of this approximation.

In the presence of uncertainty, condition (12) still determines x̄ and ȳ, but in this case

x̄ 6= xss and ȳ 6= yss. Given (x̄, ȳ), condition (13) allows us to determine the first-order

derivatives of g (·) and h (·) by solving a quadratic system that includes the variance term
3
6

[Fεεx (x̄,0)]iφ1φ2α3 [V [εt+1]]
φ1
φ2
. This adjustment has two important implications. First, it

implies that the first-order derivatives gx (x̄) and hx (x̄) contain an uncertainty correction

for variance risk. Second, the Blanchard-Kahn conditions for getting unique and stable

first-order derivatives have to hold for a risk-adjusted version of the model. Hence, uncer-

tainty may contribute to violate or satisfy the Blanchard-Kahn conditions, unlike in the

standard perturbation method where these conditions are evaluated at the deterministic

steady state. Importantly, the uncertainty correction 3
6

[Fεεx (x̄,0)]iφ1φ2α3 [V [εt+1]]
φ1
φ2
is of

third order and therefore not present in the second-order approximation around the risky

steady state as studied in Collard and Juillard (2001b).

The condition in (14) for the second-order terms gxx (x̄) and hxx (x̄) is similar to the

one used in the standard perturbation method, except that all derivatives of F (·), g (·),
and h (·) are evaluated at the risky steady state. As a result, gxx (x̄) and hxx (x̄) contain a

correction for uncertainty. This implies that the cross-derivatives with respect to σa,t and
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other states in gxx (x̄) as well as for the rows linked to the endogenous states in hxx (x̄)

may be different from zero, and hence capture state-dependent effects in the impulse

response functions following a change in σa,t due to an uncertainty shock. In contrast, the

corresponding second-order derivatives with respect to σa,t in the standard perturbation

approximation are zero by construction, because gxx (xss) and hxx (xss) do not capture

the effects of risk, as they are the second-order derivatives to a deterministic version of the

model.15 The uncertainty correction in gxx (x̄) and hxx (x̄) arises from two effects. The

first is that all derivatives are evaluated in x̄ which differs from xss due to the presence

of uncertainty. To understand the second effect, recall that in standard perturbation the

second-order derivatives gxx (xss) and hxx (xss) are not adjusted for risk, partly because

they are computed using gx (xss) and hx (xss). In contrast, when approximating around

the risky steady state, one can very loosely think of gx (x̄) ≈ gx (xss) + 0.5gσσx (xss) and

hx (x̄) ≈ hx (xss) + 0.5hσσx (xss), where σ is the perturbation parameter as defined in

Schmitt-Grohe and Uribe (2004) and its derivatives capture effects of risk. Thus, the

second effect arises because (14) relies on gx (x̄) and hx (x̄), implying that their risk-

adjustment spills over to the second-order derivatives gxx (x̄) and hxx (x̄).

Finally, the condition in (15) allows us to determine gxxx (x̄) and hxxx (x̄), where all

derivatives of F (·), g (·), and h (·) are evaluated at the risky steady state. As a result,
gxxx (x̄) and hxxx (x̄) are also adjusted for uncertainty for the same reasons as mentioned

for gxx (x̄) and hxx (x̄) and may further help to generate state-dependent effects of an

uncertainty shock.

For the New Keynesian model we consider, nearly all of the uncertainty correction

in the higher-order derivatives comes from the risk adjustment in gx (x̄) and hx (x̄).

One way to realize this is to apply gx (xss) and hx (xss) instead of gx (x̄) and hx (x̄) in

(14) and (15) to solve for (gxx (x̄),hxx (x̄)) and (gxxx (x̄),hxxx (x̄)), which then hardly

imply any state-dependence in the impulse response functions to an uncertainty shock.

Importantly, the sizable risk correction in gx (x̄) and hx (x̄) arises from the third order

term [Fεεx (x̄,0)]iφ1φ2α3 in (13), meaning that a third order approximation is needed to

get visible state-dependence in the impulse response functions for an uncertainty shock.16

Unfortunately, the moment conditions in (12) to (15) do not imply a recursive struc-

ture for computing the required terms in (10). This is because Fεε (x̄,0), Fεεx (x̄,0),

and Fεεε (x̄,0) depend on (x̄, ȳ) and the derivatives of g (·) and h (·). We therefore use
an iterative procedure, where Fεε (x̄,0), Fεεx (x̄,0), and Fεεε (x̄,0) are computed using

15A simple way to realize this is to note that gxx (xss) and hxx (xss) are computed without using
V [εt+1], as shown in Schmitt-Grohe and Uribe (2004).
16As shown in the Online Appendix, the expressions for Fεε (x̄,0), Fεεx (x̄,0), and Fεεε (x̄,0) are

identical to those provided for Fσσ, Fσσx, and Fσσσ, respectively, in Schmitt-Grohe and Uribe (2004)
and Andreasen (2012), when setting all derivatives of g (·) and h (·) with respect to the perturbation
parameter σ equal to zero. The conditions in (12) to (15) are therefore easy to implement from existing
results and computer packages on the standard perturbation method. In our case, we modify the highly
effi cient Matlab codes of Binning (2013).
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derivatives of g (·) and h (·) from the standard perturbation method in the first iteration
and afterwards from the previous iteration to recursively solve (12) to (15). Our Online

Appendix summarizes this algorithm, which basically iterates on the solution routine for

the standard perturbation approximation until convergence (typically within five itera-

tions).

4.3 A Pruned State-Space Representation

The system for a standard third order perturbation approximation obviously reduces to

the system in (10) when all derivatives of the g- and h-functions with respect to the

perturbation parameter σ are equal to zero. This means that the pruning scheme intro-

duced in Andreasen et al. (2018) can also be applied to (10) with all derivatives of the g-

and h-functions with respect to xt evaluated at x̄ instead of xss. The Blanchard-Kahn

condition related to (13) ensures that hx (x̄) is stable and hence that this pruned approx-

imation is stable. Thus, the closed-form solution for unconditional moments and GIRFs

derived in Andreasen et al. (2018) can also be applied to our third order approximation

at the risky steady state. This greatly facilitates its use in a formal estimation routine

that matches unconditional first and second moments, impulse response functions, or a

combination of the two, as considered below in Section 5.

4.4 Accuracy and Execution Time

We evaluate the accuracy of Taylor approximations around the deterministic and risky

steady state by computing unit-free Euler-equation errors for the considered New Key-

nesian model along a simulated sample of 10, 000 observations for the states. The two

estimated versions of the New Keynesian model presented below in Table 3 are considered

for this exercise, where the states are simulated using a standard third order perturbation

approximation. For the benchmark model, the standard perturbation method performs

fairly well, as the mean absolute Euler errors (MAEs) across all endogenous equations

in the model are only 1.19% at second order, 1.10% at third order, and 0.65% at fourth

order. The proposed third order approximation around the risky steady state implies

an MAE of 0.79%, meaning that it outperforms the standard perturbation method at

third order and is close to providing the same level of accuracy as the fourth-order Taylor

approximation around xss. Similarly results are obtained for the estimated version of the

New Keynesian model with standard Epstein-Zin preferences (see the Online Appendix

for further details).

The standard third order perturbation approximation is obtained in just 0.60 seconds,

while it takes 12 seconds to compute a fourth-order approximation using the codes of

Levintal (2017). The required time for computing our third order approximation around

the risky steady state depends mainly on the number of iterations needed to obtain
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convergence, but the execution time is typically around 4 seconds. Thus, we get an

approximated model solution with state-dependent impulse response functions following

an uncertainty shock that is about three times faster than the existing alternative of

using a fourth-order approximation. In addition, it is also more costly to use a fourth-

order than a third order approximation when simulating the model. It takes one second

to simulate 10, 000 observations from a third order approximation but about 22 seconds

when using a fourth-order approximation.17

To summarize, the proposed third order Taylor approximation around the risky steady

state delivers a high level of accuracy that is comparable to a fourth-order perturbation

approximation but is computationally much more effi cient than this fourth order alter-

native.18

5 Empirical Results for the New Keynesian Model

This section presents our empirical findings for the New Keynesian model. We introduce

the adopted estimation methodology in Section 5.1, and discuss the estimated parameters

in Section 5.2 and the model fit in Section 5.3.

5.1 Estimation Methodology

Let the vector γ contain the structural parameters of the New Keynesian model. As

in Basu and Bundick (2017), we estimate γ using two sets of moments. The first set

includes the median target responses from the IVAR for the first 20 periods following an

uncertainty shock in expansions ψ̂EXP and in recessions ψ̂REC as presented in Section

2. The second set is a vector of unconditional sample moments m̂T , which ensures that

the model also matches stylized unconditional properties of the US economy. These

unconditional moments are constructed using the same data that we used to estimate

the IVAR. That is, we use inflation, the shadow rate of Wu and Xia (2016), output,

investment, consumption, and hours (with the four latter series detrended as in Hamilton

(2018)). The unconditional moments we target are: i) the mean of inflation and the

policy rate, ii) the covariances between real GDP and the other five variables, and iii)

the auto-covariances of all six variables.
17The execution time for the computations mentioned in this section are done on a standard laptop

with an Intel(R) Core(TM) i7-7600 CPU processor with 2.80GHz.
18de Groot (2016) highlights another shortcoming of the third-order Taylor approximation at the

deterministic steady state, as none of its terms account for the conditional standard deviation of volatility
shocks, i.e. σσ. Unreported results show that our third-order Taylor approximation around the risky
steady state corrects for σσ and hence also addresses this limitation of the standard solution method.
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The adopted estimator is given by

γ̂ = arg min
γ∈Γ

(
ψ̂EXP −ψEXP (γ)

)′
V−1
EXP

(
ψ̂EXP −ψEXP (γ)

)
+(

ψ̂REC −ψREC (γ)
)′

V−1
REC

(
ψ̂REC −ψREC (γ)

)
+

Λ (m̂T −m (γ))
′
W−1 (m̂T −m (γ)) ,

(16)

where VEXP ,VREC , and W are diagonal matrices containing bootstrapped standard er-

rors for the related moments and Γ denotes the feasible domain of γ. The moments in

the New Keynesian model are denoted by ψEXP (γ), ψREC (γ), and m (γ), which we

compute using the third order pruned approximation around the risky steady state. The

impulse responses to an uncertainty shock are here obtained using a procedure similar

to the one applied in the IVAR. That is, for each γ, we simulate 10, 000 observations

for output in the New Keynesian model to find the set of states where output is be-

low its 10% percentile (denoted XREC) and above its 90% percentile (denoted XEXP ).

The impulse response functions are then computed as the average of the GIRFs across

these selected states, i.e., ψm (γ, h) = 1
250

∑250
i=1GIRFY(h, δunc,x

(i)) for x(i) ∈ Xm, where

ψm (γ) ≡ {ψm (γ, h)}20
h=1 and m = {EXP,REC} using 250 selected states. The ex-

pression for GIRFY(h, δunc,x
(i)) is here evaluated in closed form using the observation

in Section 4.3, which greatly reduces the computational costs in relation to the estima-

tion. The unconditional means in m (γ) are also evaluated in closed form. Given that

we already need to simulate the model to find the sets XREC and XEXP for the impulse

response functions, we simply compute all second moments from this simulated sample

path and not by the closed form expression in Andreasen et al. (2018) which is com-

putational demanding given the large number of states in the model. Finally, we set

Λ to ensure that the model implies a reasonable fit to the unconditional moments, and

hence replicates both the impulse response functions from the IVAR and the selected

unconditional moments.

Most of the structural parameters in the model are estimated, while the few remaining

parameters are given the same values as in Basu and Bundick (2017). That is, we let

ν = 0.9 for firm leverage, αp = 1/3 for the production function, δ = 0.025 for steady

state capital depreciations, δ2 = 0.0003 for the function related to depreciation costs (with

δ1 = 1/β − 1 + δ), and we set the fixed cost Φ to remove pure profit for intermediate

firms using the procedure in Basu and Bundick (2017). For households, the values of Nss

and η are set to match a steady state Frisch labour supply of two.

5.2 Estimated Structural Parameters

The estimation results for our preferred version of the model are reported in the first

column of Table 3, where RRA is constrained to a plausible level of ten. We find a
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standard value for the subjective discount factor (β = 0.994), and evidence in favor of

habit formation in consumption (b = 0.26). The preference parameter σ is somewhat high

at 39.06, but this reflects the low calibrated value of η = 0.017, and we therefore find a

fairly standard exponent for consumption of η (1− σ) = −0.64 in (4). These estimates

imply Vt < 0, meaning that negative values of α reflect preferences for early resolution of

risk. We find α = −138, which is very similar to the estimate reported in Andreasen and

Jørgensen (2020) when RRA= 10. Our estimate of α is fairly precise, with a bootstrapped

standard error of 3.89. To aid the interpretation of the estimated price adjustment

parameter φP = 163, Table 3 reports the corresponding Calvo parameter ξCalvo that

implies the same slope of the aggregate supply relation as φP . We find ξCalvo = 0.84,

which corresponds to an average price duration of about 6 quarters. The substitution

elasticity θµ between intermediate goods is 6.45, which gives an average price markup of

about 18%. Finally, the central bank assigns more weight to stabilizing inflation than

output growth with ζΠ = 1.04 and ζ∆Y = 0.39.

The second column in Table 3 shows the corresponding estimates when applying the

standard formulation of recursive preferences with u0 = 0. We find that the estimates

are very similar (but not identical) to those reported for our preferred specification.

The key difference relates to RRA, which is 124 when u0 = 0 and hence comparable to

other estimates in the macro literature as in Binsbergen et al. (2012) and Rudebusch

and Swanson (2012) but much larger than implied by micro evidence (see, for instance,

Barsky et al. (1997)).

5.3 Model Fit

Figure 3 shows the ability of the New Keynesian model to reproduce the median tar-

get responses in the IVAR following an uncertainty shock of the same size in recessions

and expansions. We find that the model successfully matches the drop in output, con-

sumption, and the substantially larger reduction in investment, which is more severe in

recessions than in expansions. This ability of the model to generate state-dependent ef-

fects of an uncertainty shock is seen clearly from Figure 4, which compares the responses

in the New Keynesian model across expansions and recessions. The model produces also

a larger contraction of hours in recessions than in expansions, though it does not quan-

titatively replicate the contraction estimated with the IVAR.19 The effects on the price

level are well matched in recessions, whereas the responses in expansions are at the lower

end of the 90% confidence band. The negative response in the policy rate on impact is

perfectly captured by the model, but it generally predicts a less accommodating path for

the policy rate following an uncertainty shock than implied by the IVAR.

19It is well known that without modeling labor market frictions, the response of hours in this type of
model tends to be weaker than in the data. See Basu and Bundick (2017) and Fernández-Villaverde and
Guerron-Quintana (2020) for discussions on this point.
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Table 3: Estimated Structural Parameters

This table reports the estimated structural parameters in the New Keynesian model using (16) with
Λ = 105, where bootstrapped standard errors are shown in parenthesis. These standard errors are
obtained by simulated 196 samples of the same length as in the data from the IVAR model by drawing
with replacement from the estimated residuals η̂t. From these samples, the required sample moments
for the estimator in (16) are generated, where the median target impulse responses, i.e. BMT , are used
to identify an uncertainty shock. The results in column (1) are for the benchmark model where RRA
= 10, which implies u0 = −1.01. The results in column (2) are for the standard formulation of recursive
preferences with u0 = 0, where the estimates imply an RRA of 124. The estimates of φP are reported
as the corresponding Calvo parameter ξCalvo, i.e. the probability of not adjusting prices, that gives the
same slope of the aggregate supply relation.

(1) (2)
Description Benchmark Standard specification of

model recursive preferences (u0 = 0)
β Subjective discount factor 0.994

(0.002)
0.994
(0.002)

b Habit formation 0.26
(0.04)

0.27
(0.04)

σ Preference parameter 39.06
(0.30)

38.93
(0.29)

α Timing attitude −137.75
(3.08)

−144.37
(3.58)

φK Investment adjustment costs 5.50
(0.90)

5.46
(0.90)

ξCalvo Price stickiness 0.84
(0.06)

0.84
(0.05)

θµ Substitution elasticity of goods 6.45
(1.59)

6.27
(1.63)

ζΠ Weight on inflation gap 1.04
(0.02)

1.04
(0.02)

ζ∆Y Weight on output growth 0.39
(0.05)

0.39
(0.05)

Πss Steady state inflation rate 1.015
(0.001)

1.015
(0.001)

Stochastic processes
ρσ Persistence of uncertainty shock 0.69

(0.08)
0.69
(0.08)

σσ Volatility of uncertainty shock 1.04
(0.03)

1.05
(0.006)

ρa Persistence of demand shock 0.96
(0.01)

0.96
(0.01)

σa Volatility of demand shock ×103 0.20
(0.04)

0.22
(0.04)

ρz Persistence of technology shock 0.63
(0.06)

0.62
(0.08)

σz Volatility of technology shock 0.005
(0.0006)

0.006
(0.0009)

ρθµ Persistent of markup shock 0.68
(0.06)

0.66
(0.06)

σθµ Volatility of markup shock 0.20
(0.007)

0.20
(0.006)

Table 4 reports the means and a scaled version of the second moments that also enter

in the estimation. We find that the model closely matches the average level of inflation

and the policy rate, while the mean of detrended output, consumption, investment and
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Figure 3: New Keynesian Model: IRFs to an Uncertainty Shock
This figure shows the impulse response functions following a positive one-standard deviation shock to
uncertainty in the IVAR at the median target responses and their 90 percentage confidence bands. The
corresponding responses in the the New Keynesian model are computed for εσ,t = 1 using the estimates
in column (1) of Table 3. The responses are shown for strong expansions (charts to the left) and deep
recessions (charts to the right). All responses are shown in percentage deviations, except for the policy
rate where changes in percentage points are reported.
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hours are (by construction) zero and therefore not included. The model is also successful

in matching all standard deviations and autocorrelations, and it also captures the cross-

correlations of consumption, investment, hours, inflation, and the policy rate with respect

to detrended output.
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Figure 4: New Keynesian Model: A State-Dependent Uncertainty Shock
This figure shows the impulse response functions following a positive one-standard deviation uncertainty
shock (i.e. εσ,t = 1) in the New Keynesian model using the estimates in column (1) of Table 3. The
responses are shown for strong expansions and deep recessions. All responses are shown in percentage
deviations, except for the policy rate where changes in percentage points are reported.
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Accordingly, this model goes a long way in reproducing the different impulse responses

of real activity to an uncertainty shock in expansions and recessions, while providing a

fairly accurate description of a variety of other macroeconomic moments. Crucially, the

differences in these impulse responses between the two states of the business cycle are

not explained by changes in the structural parameters or by a larger uncertainty shock

in recessions than in expansions. Instead, these asymmetric responses are solely due

to different initial conditions of the states xt, which through the model’s endogenous

propagation mechanisms make an uncertainty shock more severe in recessions than in

expansions.
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Table 4: New Keynesian Model: Fit to Unconditional Moments

This table reports the means along with the standard deviations and correlations that are related to the
covariances and auto-covariances included in the estimator in (16). The data moments are computed
using quarterly US data from 1962Q3 to 2017Q4, while the corresponding model-implied moments are
computed in closed form for the means and using a simulated sample of 10, 000 observations for the second
moments. Moments for output, consumption, investment, and hours are in deviation from steady state,
as indicated by the "hat" notation, while the moments for inflation and the policy rate are annualized.
The filtering of the data for the moments on US data is done using the procedure in Hamilton (2018).

(1) (2) (3)
Moments Data Benchmark Standard specification of

Model recursive preferences (u0 = 0)
Means
log Πt 0.034 0.034 0.033
logRt 0.051 0.055 0.056

Standard deviations
Ŷt 0.034 0.036 0.036
Ĉt 0.022 0.022 0.022
Ît 0.101 0.098 0.099
N̂t 0.032 0.030 0.030
log Πt 0.022 0.025 0.026
logRt 0.041 0.025 0.026

Cross-correlations
corr(Ŷt, Ĉt) 0.86 0.68 0.65
corr(Ŷt, Ît) 0.86 0.93 0.93
corr(Ŷt, N̂t) 0.90 0.96 0.96
corr(Ŷt, log Πt) -0.38 -0.04 -0.05
corr(Ŷt, logRt) -0.04 0.03 0.02

Auto-correlations
corr(Ŷt, Ŷt−1) 0.92 0.97 0.97
corr(Ĉt, Ĉt−1) 0.90 0.97 0.96
corr(Ît, Ît−1) 0.91 0.97 0.97
corr(N̂t, N̂t−1) 0.91 0.96 0.96
corr(log Πt, log Πt−1) 0.99 0.92 0.92
corr(logRt, logRt−1) 0.97 0.96 0.96

6 Inspecting the Mechanisms

This section identifies the mechanisms in the New Keynesian model that generate larger

effects of an uncertainty shock in recessions than in expansions. We first show in Section

6.1 that the state-dependent effects of an uncertainty shock are primarily generated by

the upward nominal pricing-bias channel. The economic interpretation of this channel is

presented in Section 6.2, while Section 6.3 provides some external validation that supports
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the importance of this channel. We end by discussing some policy implications of our

findings in Section 6.4.

6.1 Channels for an Uncertainty Shock

As emphasized by Bianchi et al. (2019), each of the intertemporal Euler-equations in

the model reflects expectations to uncertain realizations of state and control variables in

the future and hence introduce different channels for an uncertainty shock to affect the

economy. This implies that our model has the following channels for an uncertainty shock:

i) the precautionary savings channel as captured by the consumption Euler-equation; ii)

the nominal upward pricing bias channel as captured by the New Keynesian Phillips curve

(NKPC) related to firms’optimality condition for the nominal price; iii) the inflation risk

premium channel related to the Fisherian equation; and iv) the investment adjustment

channel, that arises due to investment adjustment costs.20

We evaluate the relative importance of each channel in generating asymmetries by

solving the model as described in Section 4, except that each Euler-equation is linearized

one at the time to eliminate the ability of its implied channel to generate asymmetries in

response to an uncertainty shock. These modified solutions are implemented by letting

all second and third order derivatives of f in (11) for the considered Euler-equation

equal to zero, which modify Fεε, Fεεε, Fεεx, Fxx, and Fxxx in (12) to (15) (see the

Online Appendix). As a result, all terms in the third-order approximation at the risky

steady state remain corrected for risk, although these modified solutions ignore risk-

corrections related to the particular Euler-equation. For each of these modified solutions,

we calculate the differences in the impulse responses between recessions and expansions,

and compare them to the baseline case where all channels are active. Given that changes

in the structure of the economy affect the risky steady state, we also recompute the risky

steady state for each of these modified solutions.
Our findings are summarized in Figure 5. The results show that omitting the state-

dependence related to the nominal pricing bias channel (the green line with stars) removes

nearly all of the asymmetry in the responses between recessions and expansions, whereas

none of the other channels have similar profound effects. This shows that the upward

nominal pricing bias channel is the crucial channel to generate larger responses of out-

put, consumption, investment, and hours to an uncertainty shock in recessions than in

expansions.21

20The Euler-equation for stock returns may also imply an equity risk premium channel for an uncer-
tainty shock. However, this channel is not present in our New Keynesian model because it omits feedback
effects from the stock market to the real economy.
21In the Online Appendix we draw the same conclusion by considering the reverse exercise, where

only the upward nominal pricing bias channel is active in the model. The Online Appendix also shows
that the nonlinear terms related to the upward nominal pricing bias channel do not affect the overall
magnitude of the impulse responses to an uncertainty shock but only the state-dependence of these
responses. Fernández-Villaverde et al. (2015) find that the effects of an uncertainty shock are significantly
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6.2 A State-Dependent Upward Nominal Pricing Bias Channel

This upward nominal pricing bias channel arises because firms’profit function is asymmet-

ric around the optimum in absence of uncertainty.22 Hence, in the presence of uncertainty

and sticky prices, it is beneficial for firms to set a relatively high nominal price. That

is, firms respond to higher uncertainty by biasing their prices upwards for given mar-

ginal costs, i.e., firms respond by raising their markup. Our results show that firms bias

their prices upward relatively more in recessions than in expansions and hence display

a state-dependent upward nominal pricing bias. This effect is also evident from Figure

4, as prices in the baseline responses increase by more in recessions than in expansions

following the first quarters after the uncertainty shock, whereas this difference disappears

in Figure 5 when omitting the upward nominal pricing bias channel. To understand the

state-dependent nature of this pricing bias in this model with an ex-ante uncertainty

shock, we first study the firm’s pricing problem in a stylized two-period partial equilib-

rium setting, where the various effects are very transparent. The following subsection

then shows that these insights carry over to the full general equilibrium model studied

above.

6.2.1 A Two-Period Setting

Consider the following setting for the ith firm, which generalizes the static example in

Fernández-Villaverde et al. (2015) and Born and Pfeifer (2020) to two periods and with

quadratic price adjustment costs. The firm lives for two periods and is initially at the

deterministic steady state where Πss = 1 and Pss = 1. No shocks affect real quantities,

meaning that marginal costsMCt (i) and aggregate output Yt are constant at (θµ − 1) /θµ

and 1, respectively. The objective of the firm is to set the current price Pt (i) and the

future price Pt+1 (i) when accounting for uncertainty about the aggregate price level in

the next period, i.e., Pt+1, whereas the current price level is known at Pt = 1. The

expression for real profit is otherwise identical to the one provided in the full model,

except that future profits are discounted by β. Hence, the firm solves the problem

Max
Pt(i),Pt+1(i)

∑
j={0,1}

Etβj
[(

Pt+j(i)

Pt+j
− θµ − 1

θµ

)(
Pt+j(i)

Pt+j

)−θµ
− φP

2

(
Pt+j(i)

Pt−1+j(i)
− 1

)2
]
.

(17)

Suppose that the firm expects an aggregate price level in period t+ 1 of either Pt+1 =

Pt+σ or Pt+1 = Pt−σ with equal probability. Without price adjustment costs (φP = 0),

mitigated when linearizing the NKPC. This difference is explained by the different and more accurate
solution method we employ, as we for a standard third-order perturbation approximation replicate the
finding in Fernández-Villaverde et al. (2015) (results available upon request).
22As clarified by Fernández-Villaverde et al. (2015) and Born and Pfeifer (2020), the asymmetry of

the profit function is due to the combination of the isoelastic Dixit-Stiglitz demand function and the
assumption that demand always has to be satisfied.
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it is easy to see that (17) reduces to two static optimization problems, where the current

optimal price is Pt (i) = 1 (because Pt is known), and the optimal price in the next

period Pt+1 (i) displays the familiar upward pricing bias due to uncertainty about Pt+1

(see Fernández-Villaverde et al. (2015) and Born and Pfeifer (2020)).23 To illustrate the

effects of accounting for price stickiness, we let θµ = 6, φP = 163, and β = 0.994 as

implied by our estimates in Table 3. The first chart in Figure 6 shows the profit function

for different values of the current price Pt (i) around the optimum of Pt+1 (i). The novel

observation is that this profit function is asymmetric around one as φP > 0, despite

the aggregate price level Pt is known. In contrast, without price stickiness φP = 0, the

profit function is perfectly symmetric around one with a known price level, as shown

in the Online Appendix. The second chart in Figure 6 plots the entire profit function

and reveals that both Pt (i) and Pt+1 (i) display upwards pricing biases. Thus, although

there is no uncertainty about the current price level Pt, the presence of price stickiness

makes it optimal for the firm to bias its current price upwards to smooth out its price

adjustment costs. In other words, uncertainty about the aggregate price level in the next

period is suffi cient to generate an upward pricing bias in the current price Pt (i). This

is an important observation because it corresponds to the situation in the full general

equilibrium model, as firms realize that uncertainty will be higher in the next period but

already in the current period decide to bias their prices upwards.

Figure 6 also shows that these pricing biases are increasing in the amount of uncer-

tainty about Pt+1 - and hence future inflation Πt+1 ≡ Pt+1/Pt - as captured by higher

values of σ. This finding is closely related to the result in Born and Pfeifer (2020), who

show that higher uncertainty about the aggregate price level generates a higher upward

pricing bias within their static setting. Unreported results also reveal that the pricing

biases in Pt (i) and Pt+1 (i) are increasing for higher values of β in a model with an ex-

ante uncertainty shock, because it increases the importance of the price adjustment costs.

Hence, in a more elaborated setting where firms discount profits by a stochastic discount

factor, higher values of this discount factor in recessions (due to low consumption and

high marginal utility) will increase the pricing bias in Pt (i), and vice versa for expansions

with a low discount factor (due to high consumption and low marginal utility).

6.2.2 The Full Model

To understand the determinants behind this state-dependent pricing bias in the full

model, i.e., to quantitatively assess the reasons why this channel is stronger in reces-

sions than expansions, let us look at the NKPC:

φP

(
Πt

Πss

− 1

)
Πt

Πss

= (1− θµ,t) +
θµ,t
µt

+ Et
[
Mt+1φP

Yt+1

Yt

(
Πt+1

Πss

− 1

)
Πt+1

Πss

]
. (18)

23In the absence of uncertainty, it is well-known that the firm optimally charges a gross markup of
θµ/(θµ − 1), resulting in a profit-maximizing price of Pt(i) = Pt.
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Figure 6: The Firm’s Profit Function
This figure plots the firm’s profit function as stated in (17), where Pt = 1 and the aggregate price level in
the next period is uncertain and given by either Pt+1 = Pt + σ or Pt+1 = Pt − σ with equal probability.
The applied values are θµ = 6, φP = 163, and β = 0.994.

An uncertainty shock enters in this equation through the term with the conditional ex-

pectation, i.e., Et
[
Mt+1φP

Yt+1
Yt

(
Πt+1
Πss
− 1
)

Πt+1
Πss

]
, which captures the nominal pricing bias.

To simplify the interpretation of this term, we show in the Online Appendix that the pres-

ence of Yt+1/Yt does not affect the impulse responses for an uncertainty shock, implying

that it is suffi cient to study the term PΠ
t ≡ Et

[
Mt+1φP

((
Πt+1
Πss

)2

− Πt+1
Πss

)]
. One way

to analyze this term is to note that PΠ
t is equivalent to the price of a hypothetical as-

set with pay-off φP
(
(Πt+1/Πss)

2 − Πt+1/Πss

)
. This pay-off increases monotonically for

higher values of Πt+1 (with slope coeffi cient φP (2Πt+1/Π
2
ss − 1/Πss)), implying that PΠ

t

represents the price for the firm of buying protection against high inflation in the future.

The value of this asset can be decomposed as

PΠ
t =

1

RR
t

Et

[
φP

((
Πt+1

Πss

)2

− Πt+1

Πss

)]
︸ ︷︷ ︸

Risk-neutral price

+ Covt

[
Mt+1, φP

((
Πt+1

Πss

)2

− Πt+1

Πss

)]
︸ ︷︷ ︸

Risk premium

, (19)

where RR
t = 1/Et [Mt+1] denotes the gross real interest rate. The first term on the right

hand side in (19) is the risk-neutral price of this hypothetical asset with its expected pay-

off discounted by the real rate. The second term is the additional price that a risk-averse

investor is willing to pay for inflation protection and constitutes a risk premium. The

unconditional mean of this risk premium is 1.9% in the model, but it displays considerable
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counter-cyclical variation with a low mean of 0.9% in expansions and a high mean of 3.7%

in recessions.

Figure 7: New Keynesian Model: Determinants of the Upward Pricing Bias
This figure shows the impulse response functions following a positive one-standard deviation uncer-
tainty shock (i.e. εσ,t = 1) in the New Keynesian model using the estimates in column (1) of Ta-
ble 3. The responses are shown for strong expansions and deep recessions. The risk premium in

PΠ
t is given by Covt

[
Mt+1, φP

((
Πt+1

Πss

)2

− Πt+1

Πss

)]
, the inflation volatility risk premium is defined as

Covt
[
Mt+1, φP

(
Πt+1

Πss

)2
]
, and inflation volatility is measured by Vt [Πt+1]. The responses of prices and

inflation are shown in percentage deviations, whereas the other response are scaled by 100 and shown in
absolute deviations.
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The top row of Figure 7 shows that the asymmetric responses of prices and inflation

to an uncertainty shock go hand in hand with the asymmetric response of the price

of this hypothetical asset PΠ
t . In the bottom row of this figure, we further show that

these asymmetric responses in PΠ
t are generated by the risk premium. The dominating

term in this risk premium is the squared term for inflation, i.e., Covt
[
Mt+1, φP

(
Πt+1
Πss

)2
]
,

which can be interpreted as an inflation volatility risk premium. To understand why

this conditional covariance displays larger responses in recessions than in expansions, we

exploit two insights from the simplified two-period setting discussed above.

First, the inflation volatility risk premium is closely related to the amount of inflation

volatility, which increases the pricing bias as shown in Section 6.2.1. One way to mea-
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sure the degree of inflation volatility is to compute the conditional variance of inflation

Vt [Πt+1]. We find that the mean of Vt [Πt+1] in recessions is 19% higher than the mean

in expansions, showing that recessions in the New Keynesian model are characterized by

much more inflation volatility than expansions.24 The process for stochastic volatility

σa,t contributes in two important ways to generate this asymmetry. First, recessions have

a higher value of σa,t than expansions, implying that an equal-size preference shock εa,t+1

is expected to have a larger impact on inflation in recessions than in expansions. Second,

the bottom right chart in Figure 7 shows that an uncertainty shock increases inflation

volatility by more in recessions than in expansions.

Second, another key driver of the inflation volatility risk premium is the dynamics

of the stochastic discount factor Mt+1. In the New Keynesian model, we find that the

realized values of Mt+1 have a higher level in recessions than in expansions due to lower

consumption and higher marginal utility than in expansions. As shown in Section 6.2.1,

a higher value of the discount factor increases the weight in the profit function to the

intertemporal smoothing of the pricing bias, and as a result helps to generate a larger

upward pricing bias in recessions than in expansions.

Thus, the economic intuition behind the state-contingent upward nominal pricing bias

is as follows. With price stickiness as in Rotemberg (1982), firms can reset their prices in

every period but face costs when doing so. In this multiperiod setting, inflation volatility

affects the current price, because it is optimal for firms to set higher prices after an

uncertainty shock to avoid large expensive future increases in prices. Two effects help to

make this pricing bias stronger in recessions than expansions. First, inflation volatility

is higher in recessions than in expansions. Second, firms discount future profits by the

stochastic discount factor, which has a higher level in recessions than in expansions. This

implies that firms assign more weight to future profits, which also helps to increase their

pricing bias by more in recessions than in expansions.25

6.3 External Validation of the Key Mechanism

The reduction in real activity following an uncertainty shock implies that wages and

the rental rate of capital also fall in the New Keynesian model (shown in the Online

Appendix). With higher prices, we therefore see a higher price markup, which Fernández-

Villaverde et al. (2015) and Basu and Bundick (2017) show is the key driver behind

the real effects of an uncertainty shock in the model, although Born and Pfeifer (2020)

24This is consistent with empirical evidence, both when measuring inflation volatility by the interquar-
tile range of the one quarter ahead forecast of inflation in the Survey of Professional Forecasts or by a
GARCH(1,1) model applied to the residuals of an autoregression with four lags for CPI inflation.
25We stress that an increase in prices is not necessary for the upward nominal price channel to be

active in the model. For instance, in our Online Appendix we show that all results and interpretations
go through when increasing ζΠ to 1.5, which implies a fall in prices in response to an uncertainty shock
but a relatively milder fall in prices during recessions than in expansions.
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challenge this effect. Our finding that the upward nominal pricing bias is state-contingent

helps to clarify how this channel works across the business cycle. This is illustrated in

Figure 8, which shows that the price markup increases by more in recessions than in

expansions (top chart to the left), and that this difference disappears when we omit the

state-contingent nominal pricing bias (top chart to the right).26

Thus, a simple way to validate the key mechanism in the New Keynesian model for

generating asymmetric responses to an uncertainty shock is to explore if the price markup

in the US displays asymmetric effects across the business cycle. We implement this

external validation of the model by extending the IVAR with the price markup, which

we measure by the inverse of the labor share in the business sector as in Fernández-

Villaverde et al. (2015). Similar to our baseline analysis in Section 2, we allow the

responses of the price markup and the other variables in the IVAR to change across the

business cycle. The middle row in Figure 8 reports the median target responses for the

price markup in expansions and recessions alone with their 90 percent confidence bands.

The responses in recessions are much larger than in expansions, in particular after the

first four quarters. This is seen clearly from the bottom left chart in Figure 8, which

shows that the median target response in recessions is substantially above the response

in expansions. The bottom right chart shows that the differences in these median target

responses are significant at the 90% level. Thus, the dynamic responses of the price

markup in the US appear to be consistent with the predictions from the New Keynesian

model, which leaves further support for the presence of a state-contingent upward nominal

pricing bias.27

6.4 Policy Implications

The presence of a state-dependent upward nominal pricing bias has also important impli-

cations for monetary policy. We illustrate this by considering what would happen if the

central bank adopts a more accommodating monetary policy to stabilize output growth.

To highlight the effects from the state-dependent nature of the upward nominal pricing

bias, we focus on how this change affects the effectiveness of monetary policy across the

business cycle. This is done using an uncertainty shock as large as the one materialized

during the Great Recession.

26The nonlinearities originating from the upward price bias channel are responsible for the state-
dependent response of the markup, which drives the state-dependent responses of real activity in our
model. Notice that the markup increases also because of the aggregate demand channel (the precaution-
ary savings channel explained in Section 6.1), which also depends on nominal rigidities (see Fernández-
Villaverde et al. (2015) and Basu and Bundick (2017)). In particular, this channel explains why real
activity falls after an uncertainty shock, which eventually drives prices down.
27In the Online Appendix, we further show that the only channel that eliminates the state-dependent

responses of the price markup to an uncertainty shock is the nominal upward pricing bias channel. We
also show that the same channel is behind the different responses of wages and the rental rate of capital
between the two states.
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Figure 8: Price Markup
This figure shows the generalized impulse response functions for the price markup in percent to a one-
standard deviation uncertainty shock. The top row shows the responses in the baseline New Keynesian
model (to the left) and when omitting the nominal pricing bias (to the right) using the estimates in
column (1) of Table 3. The charts in the middle row show the median target (MT) reponses in the
extended IVAR during strong expansions (to the left) and deep recessions (to the right) along with the
90 % confidence bands. At the bottom row, the differences in the median target responses in the IVAR
are reported (to the left), while the difference in these responses between deep recessions and strong
expansions are shown to the right along with the bootstrapped 68% and 90% confidence bands.
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We start by simulating our New Keynesian model to find the set of states where

output is below its 1% percentile and hence capture a very deep recession that mimics

the Great Recession, which is the worst contraction in our sample. We then consider

a big uncertainty shock of 4.2 standard deviations, as estimated in 2008Q4 according

to the IVAR at the median target response, where this shock accounts for about 40%

of the output loss throughout the Great Recession (as shown in the Online Appendix).

Given this setting, we compute impulse responses conditional on two parametrizations

of the Taylor rule: i) the baseline specification as given by column (1) in Table 3 and

ii) a counterfactual with a more accommodating central bank to economic activity with

the weight on output growth increased from ζ∆Y = 0.39 to ζ∆Y = 0.50. Charts to the

left in Figure 9 show that such a more accommodating central bank implies a larger and

more persistent reduction in the policy rate when compared to the baseline following

an uncertainty shock. But this new path for the policy rate has a fairly small effect on

output, as it only reduces the drop in output from −1.5% in the baseline to −1.4% at

the peak responses.

To put this result into perspective, the charts to the right in Figure 9 show the
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responses in the model to the same shock in a strong expansion. This scenario mimics

the situation in 1987Q4 with positive output growth, where Black Monday generated a

spectacular jump in financial volatility. In this case, the same uncertainty shock implies

only a drop in output of about 0.9% for the baseline specification of the Taylor rule. The

important observation is that a more accommodating monetary policy greatly reduces

this negative effect on output to just −0.45%. In contrast, the same change in monetary

policy had hardly any effect on the drop in output when the economy prior to the same

uncertainty shock is in a recession.

Why is a change to a more accommodating monetary policy much more powerful

in expansions than in recessions? To address this question, we have to study the two

effects of the upward nominal pricing bias highlighted in Section 6.2. On the one hand,

a stronger monetary policy response to output reduces the negative real effects of an

uncertainty shock due to a smaller increase in the price markup. On the other hand,

a larger weight on stabilizing output relative to inflation in the Taylor-rule increases

inflation volatility, which amplifies the effect of the upward nominal pricing bias and has

a negative effect on output as discussed above. The bottom part of Figure 9 shows that

a more accommodative monetary policy increases inflation volatility in recessions, but

not in expansions where it actually falls partly due to the smaller drop in output. As a

result, a more accommodating monetary policy is able to greatly reduce the increase in

the price markup in expansions but not in recessions, and this explains why a change in

systematic monetary policy would be more effective in expansions than recessions.

7 Conclusion

This paper employs a nonlinear VAR and a non-recursive identification strategy using a

combination of narrative, correlation, and sign restrictions to show that the real effects

of an uncertainty shock are stronger when growth is low (as in recessions) than when

growth is high (as in expansions). An estimated medium-scale New Keynesian model

approximated to third order around the risky steady state goes a long way in reproducing

these state-dependent impulse responses to an uncertainty shock. The key mechanism is

that firms display a stronger nominal upward pricing bias in recessions than in expansions,

as firms face more inflation uncertainty and have a higher value of the discount factor in

these states of the business cycle. This leads firms to post higher prices through higher

markups in recessions when compared to expansions, which then worsens the real effects

of an uncertainty shock in recessions. This prediction is supported by a nonlinear VAR

that produces a larger response in an empirical measure of the price markup in recessions

than in expansions following an uncertainty shock. From a policy standpoint, our model

predicts that a reduction in the monetary policy rate is less effective for stabilizing output

in recessions than in expansions.
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Figure 9: State-dependent Effectiveness of Systematic Monetary Policy
This figure shows the impulse response functions following an uncertainty shock of size 4.2 standard
deviations (i.e. εσ,t = 4.2) in the New Keynesian model using the estimates in column (1) of Table 3.
The baseline responses are shown for strong expansions and for very deep recessions (i.e. output below its
1 percentile) to mimic the Great Recession. The corresponding taylor rule (TR) refer to a counterfactual
replacing the estimated coeffi cient ζ∆Y = 0.39 with the value ζ∆Y = 0.5. All responses are shown in
percentage deviations, except for the policy rate where changes in percentage points are reported.
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