
Formal insurance and risk-sharing networks

Tizié Bene

November 28, 2023

For the latest version, please click here

Abstract

This paper examines the influence of formal insurance on the configuration of risk-

sharing networks. When facing idiosyncratic risks, agents can choose between forming

costly risk-sharing links and purchasing formal insurance. I characterize the equilibrium

of the insurance game and show that an agent’s equilibrium demand for formal insurance

decreases with the number of agents he can rely on. I find that formal insurance and risk-

sharing networks are substitutes. Moreover, the price of formal insurance determines

how agents’ incentives to form links vary with the number of agents they are connected

to. For some price levels, there is multiplicity in the structure of stable networks. When

the linking cost is high, the unraveling of the risk-sharing network is gradual, and the

number of components in a stable network decreases weakly and progressively as the

price of insurance decreases. When the linking cost is low, the unraveling is abrupt and

agents go from being connected to the entire community to relying only on the formal

insurance.
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1 Introduction

In poor regions, individuals are frequently confronted with a myriad of risks, ranging from

health emergencies to economic instability, see Banerjee and Duflo (2011). Traditionally,

these populations have been underserved by conventional insurance products, often due to

a mismatch between the offerings and their specific needs. This disconnect opens the door

to innovative market opportunities. Microinsurance emerges as a response to this challenge,

providing tailored insurance solutions aimed at the unique circumstances of people in low-

income countries. The objective is twofold: to address the unmet needs of these communities

and to achieve profitability, see Merry and Rozo Calderon (2022), LLoyd’s (2009). However,

in general, a market for insurance does not emerge in a vacuum since in the absence of

accessible formal insurance, individuals often depend on social networks as a safety net (Udry

(1994), Fafchamps and Lund (2003)). These networks, rooted in social ties, function as

informal risk-sharing mechanisms. Interestingly, they have been found to react to financial

incentives and market changes, see Banerjee et al. (2021) and Binzel et al. (2015). This

leads to the question of this study: How does formal insurance affect the structure of risk-

sharing networks? This paper delves into this inquiry, exploring the interplay between formal

insurance mechanisms and traditional social safety nets.

I propose a model where to insure against an idiosyncratic risk, individuals have the

discretion to both form risk-sharing links and purchase formal insurance in the market. After

shocks and insurance payouts, agents support those in need through private transfers. The

study finds that the insurance market significantly influences social network structure. As the

(exogenous) price of the formal insurance decreases, the incentive to form links also decreases,

confirming the intuition that risk-sharing networks and formal insurance are substitutes.

Interestingly, the price of insurance also determine how agents incentives to form links vary

with their component size, i.e., the number of agents they can rely on. Furthermore, high

linking costs lead to a gradual unraveling of the network as formal insurance prices drop.

Conversely, low linking costs lead to an abrupt transition from a fully connected network

to the empty network. I find that for the same level of prices, stable networks can differ in

structure. For a society that sees the number of risk-sharing link drop after an intervention
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like insurance subsidies, the community can be stock on a Pareto dominated equilibrium,

with less risk-sharing links after the program ends. Overall, this analysis gives vital insight

for understanding how social network providing informal insurance react to formal insurance.

I consider a benchmark where first, agents form risk-sharing links. Second, they choose

their formal insurance coverage. Third, shocks are realized and indemnities are paid. And

fourth, agents make private transfers to help the unlucky ones. Moreover, Agents are sym-

metric. However, their positions in the network affects their incentives to maintain a link.

Once a link is established, the pair of agents involved commit to a bilateral risk-sharing agree-

ment which result in equal-sharing at the component level.12 Note that the equal-sharing rule

at the component level corresponds to the efficient level of insurance when agents have the

same social weight. Therefore, any divergence between efficient networks and stable networks

would result from the network formation process. For tractability, I use constant absolute

risk aversion utilities for each agent and a normal distribution for all shocks that I consider

to be independent from one another. The analysis is then developed in several stages

First, I characterize the equilibrium of the insurance game. I show that for a given price

of formal insurance, an agent’s demand is weakly decreasing with the number of agents she

is connected to (directly or indirectly). This illustrate a substitution effect between formal

insurance and risk sharing. I compute indirect utility and show that agents are better off in a

larger component when the price of insurance is greater than the actuarial price. Otherwise,

they are indifferent.

Second, for different price levels of formal insurance, I characterize stable networks by

proposing a refinement of pairwise stability with utility transfer (PSt) criteria as presented

by Bloch and Jackson (2006).3 I show that the price of formal insurance has a direct effect

on risk sharing; the incentive to form links increases with the price of formal insurance,

confirming the substitution effect between formal insurance and the risk-sharing network.

This effect implies that the number of component in a stable network weakly increases when

the price of formal insurance decreases.
1Bramoullé and Kranton (2007) and Ambrus and Elliott (2021) propose two ways of micro-founding this

hypothesis
2There is no enforcement concern and no renegotiation.
3This approach guarantees the existence of stable networks and reduces the number of potential stable

networks.
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Third, I find that the price of formal insurance also has an indirect effect; it determines

how agents’ incentive to form links varies with the size of their component, i.e. the number of

agents they are connected to. A direct consequence of this effect is that when the cost of a link

is high, the unraveling of the risk-sharing network is gradual and the number of component

in a stable network weakly increases progressively as the price of insurance decreases. In the

opposite, when the cost of a link is low, the unraveling is abrupt and agent goes directly

from being connected to the entire community (directly or indirectly) to only relying on the

insurance market (formal insurance). Furthermore, I find that stable networks can exhibit

varied structures for the same price of formal insurance. Banerjee et al. (2021) observed that

social networks did not expand or form new connections after micro-credit programs were

introduced and subsequently canceled. This model suggests that this could be explained in

the context of formal insurance: individuals might remain confined in a stable network with

smaller component and no possibilities the formation of new stable links even after the price

of formal insurance has increased.

Fourth, I analyze the welfare and show that the Nash equilibrium of the insurance game

is constrained Pareto efficient. Conditional on the structure of the social network, individual

incentives to adopt formal insurance are aligned with social welfare. This surprising result

is due to the fact the costs of an individual taking out insurance are shared among those in

her component, as well as any payments made by the insurance company. It guarantees that

private and social incentives are aligned. Moreover, when there is multiplicity in the structure

of stable networks, the empty network, where agent totally rely on formal insurance, is always

Pareto dominated. For a community large enough, when the price of formal insurance is

relatively low, stable networks connect weakly fewer agents than efficient networks. When

the price of formal insurance is high, stable networks can connect more agents than efficient

networks. These findings provide insights into how the impact of the pricing of formal

insurance on the structure of social networks impact community welfare.

This paper inserts in a huge literature on risk-sharing in communities.4 This analy-
4A non-exhaustive list of paper include Rosenzweig (1988), Cochrane (1991), Townsend (1994), Fafchamps

and Lund (2003), Fafchamps and Gubert (2007), Fafchamps (2011), Ligon and Schechter (2012), Mazzocco
and Saini (2012), Belhaj et al. (2014) and Chiappori et al. (2014)
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sis contributes, first, to the literature on formation and stability of risk-sharing networks.5

Bramoullé and Kranton (2007) propose a model in which pairs of agents form risk-sharing

links. They assume that each pair with a link commits to share money equally each time

they meet. They show that when the round of meetings is large, there is equal sharing at

the component level. In this context, they find that equilibrium risk-sharing networks always

connect fewer agents than efficient networks. Ambrus and Elliott (2021) propose a model

where agents can bargain over the surplus generated by the risk-sharing activity. Each pair

of agents with a link make transfers that are pairwise efficient, i.e., that leave no gains from

trading on the table between any two agents who have a risk-sharing link. It is shown that this

leads to component-level efficiency and hence to an equal distribution of component income

among the members of that component in all states of the world. They find that the most

stable efficient network generates the most inequality. I build on these papers and propose

a model where there is equal sharing at the component level. Bloch et al. (2008) consider a

setting where risk-sharing links also serve to diffuse information and where informal transfers

between agents obey a social norm. In contrast to the two papers mentioned above, they

consider an exogenous network in which agents can renounce their say and fail to honor their

ex-ante risk-sharing commitment ex-post. In this case, links serve as information conduits so

that agents who deviate from the social norm can be punished. They find that thickly and

thinly connected networks tend to be stable. In contrast, I consider a model in which agents

form links and commit to sharing their monetary holdings equally, taking into account the

price of formal insurance. Bene et al. (2021) consider a demand for formal insurance against

an aggregate shock when agents are embedded in an altruism network. Incomes are subject

to an aggregate shock and an individual shock, and an insurance company offers coverage

against the aggregate shock. They find that the demand for formal insurance with altruism is

higher than without altruism at low prices and lower at high prices. However, they consider

the network as fixed. This paper consider that the risk-sharing network is endogenous and

it react to the price of formal insurance.

This contributes, second, to the literature on the impact of markets on informal institu-
5One branch of this literature looks at informal transfers on networks, see, e.g., Ambrus et al. (2014),

Bourlès et al. (2017); Bourlès et al. (2021), Ambrus et al. (2022)
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tions. Gagnon and Goyal (2017) propose a model in which agents embedded in an exogenous

network choose between a network and a market binary action. They assume that the two

actions are either substitutes or complements and analyze equilibria, welfare, and inequality.

In contrast, market actions in my setup are not binary, and whether the two actions are

substitutes or complements is not assumed, but rather a main result of the analysis. Alger

and Weibull (2010, 2007) propose a model of informal transfers motivated by altruism (or

coerced altruism) between siblings and see how family ties respond to market incentives and

how these ties affect economic outcomes. I consider a larger number of agents who can form

and break ties. They do not have altruism towards each other, but they make utility transfers

to form a new link or maintain an existing one. Overall, I focus on the interplay between

formal insurance and endogenously formed risk-sharing networks.

This analysis contributes, third, to the literature on the interplay between informal trans-

fers and formal insurance. One branch of this literature examines how the introduction of

formal insurance affects existing informal arrangements. Attanasio and Ríos-Rull (2000) ex-

amines the effects of mandatory insurance against covariate risks on informal risk-sharing,

particularly when the latter is constrained by limited commitment. The results suggest that

formal insurance can crowd out informal risk sharing, potentially leading to welfare losses

under certain conditions outlined in the study. Boucher, Delpierre, and Verheyden (2016)

explores how index-based insurance and informal risk-sharing arrangements interact. They

propose a model where moral hazard exists and agents are in an exogenous risk-sharing

group. They find that formal insurance may crowd out informal insurance if the insurance

contract is proposed to individuals. They also find that welfare can fall if the price of in-

dex insurance is high. Takahashi, Barrett, and Ikegami (2019) uses social network data on

pastoralists in southern Ethiopia to study the impact of formal index insurance on informal

risk-sharing. They find that index insurance does not crowd out informal risk sharing, and

even find weak evidence of a crowding effect. In contrast, I consider a context where there is

no a priori reason to suspect complementarity between formal insurance and informal risk-

sharing (agents face independent idiosyncratic shocks). Despite this consideration, I find that

isolated agents may engage in more risk-sharing activities after the introduction of formal

insurance. Moreover, I consider a classical formal insurance product and assume that agents
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are free to purchase it. I also abstract from commitment and moral hazard issues to focus

on the impact of the price of formal insurance on network structure.

Another branch of this literature looks at how the existence of informal institutions pro-

viding insurance affects the diffusion of formal ones. Arnott and Stiglitz (1991) showed early

on that informal risk sharing can crowd out the demand for formal insurance. In their frame-

work, informal risk-sharing takes place within pairs of symmetric agents and under moral

hazard. In contrast, I consider risk-sharing networks linking heterogeneous agents and with-

out moral hazard. In an empirical study of rural India, Rosenzweig (1988) finds that private

transfers in networks of family and friends play a central role in risk sharing and often crowd

out formal loans. These results are consistent with my theoretical results. An agent’s de-

mand for formal insurance decreases with the number of agents she is connected to (directly

or indirectly). De Janvry, Dequiedt, and Sadoulet (2014) analyzes the demand for formal

insurance against common shocks, when individual utility depends on individual and aggre-

gate wealth. They highlight strategic interactions and free-riding in individual decisions to

adopt formal insurance. In this paper, agents do not free-ride and consider the structure of

the network rather than the decision of others when purchasing formal insurance. Overall, I

provide an analysis of the demand for formal insurance when agents make informal transfers

through networks.

The rest of the paper is organized as follows. In Section 2, I present the model. I

characterize the insurance game and present an agent’s expected utility given the size of her

component in Section 3. I introduce the stability criteria in Section 4 and characterize stable

networks for different price levels of formal insurance in Section 5.

2 Model

I consider a society composed of n ≥ 2 agents in a set N . Incomes are stochastic and subject

to an idiosyncratic shock. To mitigate this risk, agents can create costly links with others,

generating an undirected risk-sharing network. There is also an external institution that sells

formal insurance covering damages. Each agent decides ex-ante, how much formal insurance

to buy. Once incomes and insurance claims are realized, linked agents make transfers to one
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another. I assume that decisions concerning insurance coverage are non-cooperative while

the creation of a link between two agents requires mutual agreement. The model thus has 4

stages. In stage 1, agents form links to share risks. In stage 2, they choose their insurance

coverage. In stage 3, income shocks and insurance claims are realized. In stage 4, agents

make private transfers, conditional on realized incomes.

Stochastic incomes. Each agent i has an initial income y0i and faces an idiosyncratic

shock εi. For tractability, I assume that idiosyncratic shocks are independent and identically

normally distributed, with expected value µ ≥ 0 and variance σ2 for every agent.6 This

could represent health shocks on agents, affecting their productivity, or on livestock. The

stochastic initial income for agent i is y0 − εi.

Insurance decisions. An external insurer offers an insurance contract against the id-

iosyncratic shock. This could represent health insurance for people or micro-insurance for

livestock. For an agent i, with coverage xi ∈ [0, 1] the price of formal insurance is pxi with

unit price p > 0 proposed exogenously by the insurer. Note that x is the vector of coverage

of every agent in the network. From an ex-ante point of view, after agents have chosen their

coverage and before transfers are made, agent i stochastic income is

yi = y0 − pxi − εi(1− xi).

The market mechanisms determining the price of formal insurance will not be analysed. I

focus on the demand for formal insurance in this analysis and take the price as given. I will

later study the impact of a price variation on the structure of the network.

Definition of links and networks. In this society, the linking cost is κ ≥ 0. This is

the cost required for any link between two agents to be established. It can be seen as the

effort required for a link to exist between two agents. However, I am agnostic about the way

this cost is shared between them. It can be that one agent bears alone the cost needed for

the formation of a link. It can also be that this cost is shared in half or another proportion.
6The assumption that shocks are normally distributed is common in the literature on incentives on the

insurance market, see, e.g., Azevedo and Gottlieb (2017), Einav et al. (2013), Farinha Luz et al. (2023), Weyl
and Veiga (2017), Veiga and Levy (2022)
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Either way, as long as the cost is paid, the link is formed. It is assumed to be a non-monetary

cost, so one can see it as the total disutility of forming a link. An undirected link between

two agents i and j is denoted gij = gji = 1. The absence of a link is denoted gij = gji = 0. By

convention, gii = 0. The network g = {(gij)}i,j∈N is a formal description of the links between

every pair of agents. There is a path between two individuals i and j in the graph g if there

exists a sequence of individuals i1, ..., ik such that gii1 = gi1i2 = ... = gikj = 1, and this path

is a cycle if gii1 = gi1i2 = ... = giki = 1. All individuals with whom agent i has a path define

the component of i in g , which is denoted Si. A tree is a graph with no cycles. A star is a

graph where one agent is involved in all links. A line is a graph with no cycles where each

agent is linked to two others except for the two end agents. A network is a forest when each

of its components is a tree. A network is a star forest when each of its components is a

star. A network is a line forest when each of its components is a line.

Informal transfers. In stage 4, once shocks and insurance claims are realized, agents make

informal transfers to each other. I consider equal sharing at the component level. This

assumption can be motivated by Bramoullé and Kranton (2007) where each pair of linked

agents commit to share their income realisations equally and meet repeatedly enough to reach

equal sharing at the component level once shocks and insurance claims are realized. If we

give the same social weight to every agent, equal sharing at the component level can also be

motivated by Ambrus and Elliott (2021), where each pair of linked agents chooses transfers

that are pairwise efficient, i.e., that maximize the sum of their expected utilities. Agent i’s

private preferences are represented by a Constant Absolute Risk Aversion (CARA) utility

function: Ui(y) = a − e−λy, with a > EU(
∑s

i=1 yi
s

). For an undirected network g, the size of

the component of an agent i is denoted by si(g). For an agent i in a component of s agents,

si(g) = s. Then, due to the CARA-Normal framework7, each agent in a component of size s

gets

u(s,x) = EU(

∑s
i=1 yi
s

)

u(s,x) = a− exp

{
−λ
(
y0 − µ− (p− µ)

∑
i

xi
s
− λσ2

2

∑
i

(
1− xi
s

)2
)}

.
(1)

7see Sargent (1987)
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In what follows, I first find the equilibrium coverage demand of an agent for a given network

g. I then use this demand to compute the indirect expected utility and solve for stable

networks given different levels of formal insurance price.

3 Insurance demand

In this section, I compute the equilibrium coverage of every agent for any given risk-sharing

network. I find that if the insurance price is lower than or equal to the actuarial price, every

agent chooses to be fully covered against the risk. Otherwise, agents choose partial coverage.

In the latter case, the coverage of an agent decreases with s, the size of his component, i.e., the

number of agents she can directly or indirectly rely on. I also compute the expected indirect

utility. I show that when the price of insurance is lower than or equal to the actuarial price,

it does not depend on the s. Otherwise, the expected indirect utility is a strictly increasing

and strictly concave function of s.

Given the timing of the game, each agent anticipates her equilibrium coverage rate before

creating links. Therefore I solve the insurance game by backward induction. Proposition 1

characterizes the equilibrium coverage rate.

Proposition 1. A profile of insurance decision, x∗, is a Nash equilibrium of the insurance

game if and only if for any agent i in a component of size s,

x∗i (s) = min

(
max

(
0, 1− sp− µ

λσ2

)
, 1

)
.

The proof is relegated to the appendix ((see proof )). One first implication of CARA

preferences is that an agent’s demand does not depend on her wealth. Another property of

this type of preference is that an agent’s choices do not depend on others’ shocks, since they

are independent. As a consequence, the insurance game exhibits strategic independence and

the best response of one agent does not depend on what others in her component do.

The comparative statics of insurance demand follow directly from Proposition 1. The

individual demand for formal insurance x∗i is non-increasing in price p and weakly increasing

in the absolute risk aversion λ, mean µ and variance of the shock σ2. When the insurance

10



price is lower than or equal to the actuarial price (p ≤ µ), every agent is fully covered

(x∗i (s) = 1) whatever the size of her component. When the price is higher than the actuarial

price (p > µ), the equilibrium coverage rate of an agent is weakly decreasing in the number of

agents in the components, it decreases until it reaches zero and then becomes flat. Overall,

there is a substitution effect between formal insurance and informal risk-sharing networks

since the coverage level chosen by an agent depends on the number of people he can rely on

directly or indirectly.

In addition, there exists a threshold on the component size above which, the equilibrium

coverage rate for each agent in the component is zero. In fact

x∗i (s) = 0⇔ s ≥ λσ2

p− µ. (2)

Define dxe as the ceiling value of the real number x, i.e., the smallest integer larger than

or equal to x. I derive from the previous result that

Corollary 1. For p > µ there exists s̃ such that if s ≥ ds̃e the equilibrium coverage rate

x∗i (s) = 0 and if s < ds̃e the equilibrium coverage rate x∗i (s) ∈ (0, 1). This threshold is equal

to

s̃ =
λσ2

p− µ.

Figure 1 illustrates how an agent’s demand for formal insurance varies with the size of

her component. I consider a community of n = 8 agents with µ = 0.64, σ2 = 2.055, λ = 2.64.

The solid line represents the demand when the price of formal insurance is lower than or

equal to µ = 0.64. The dash-dotted line represents the demand when p = 1.855. In this case,

the component’s size at which the demand for formal insurance equals zero is ds̃ = 4.465e = 5

The value of s̃ depends on the price p. When the formal insurance price is too high,

nobody ever subscribes. In fact, limp→∞ s̃ = 0 therefore the equilibrium coverage rate equals

zero since a component contains at least one individual. The same logic prevails when the

price converges to µ, every agent takes out full coverage for formal insurance. The next result

gives the indirect expected utility.

Corollary 2. If p ≤ µ, the expected indirect utility function does not vary with s. Otherwise,

it is a smooth, strictly increasing and strictly concave function of s, The expected indirect
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p ≤ 0.64 p > 0.64

Figure 1: Individual demands for formal insurance as a function of component size

utility is equal to

v(s) = a− exp

{
−λ
(
y0 − px∗i (s)− µ(1− x∗i (s))−

λσ2

2s
(1− x∗i (s))2

)}
.

The proof of this result is in the appendix (proof ). Links formed ex-ante determine the

equilibrium coverage rate. If the price of insurance is lower than or equal to the actuarial

price (µ), agents get fully insured by the formal insurance and face no more risk. Thus, the

network has no motive to be. By contrast, if it is higher than the actuarial price, agents

face some residual risk. In this case, for a fixed price of insurance, as s increases, there are

two effects: First, being in a bigger component has a positive impact on agents’ utilities due

to better diversification. Second, it also decreases their demand for formal insurance. This

implies on one hand that agents spend less on formal insurance, which increases their utility.

On the other hand, they may end up more exposed to risks, which reduces their utility.

Corollary 2 shows that the first effect dominates. Therefore, agents are better off in larger

components.
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4 Link formation and stable networks

In this section, I study the formation of risk-sharing networks. What structures will emerge

when links are formed by pairs of agents, but agents cannot coordinate link formation across

the whole population? To answer this question, I propose a refinement of the concept of pair-

wise stability with transfers8 presented by Bloch and Jackson (2006). Like pairwise stability,

pairwise stability with transfers allows link severance by individuals, and link formation by

pairs. Moreover, agents make utility transfers to form new links but also to maintain existing

ones. This entails that establishing a new link necessitates the exchange of utility, and the

continuity of a link is upheld as the involved agents engage in reciprocal utility transfers. To

refine this concept, I allow one and only one agent at a time to simultaneously cut a link and

form another. Refer to this action as link switching. This approach is motivated by the fact

that risk-sharing happens among family members or friends. Therefore it seems plausible to

assume that there are utility transfers when two agents have or decide to form a risk-sharing

link. Since utility transfers are allowed, I will not focus on each agent’s private net utility on

a link (their utility minus the linking cost formation each of them has to bear), but rather

on the relative benefit of a link on a pair.

Assume an increasing and concave utility function v. The size of the component of any

agent i is noted si(g). Since agents i and j are in the same component, si(g) = sj(g) and

si(g − ij) + sj(g − ij) = si(g). For any pair of agents i 6= j with a risk-sharing link ij, the

relative benefit of link ij in the network g is defined as

bij(g) = v(si(g))− v(si(g − ij)) + v(sj(g))− v(sj(g − ij)).

Let κ ≥ 0 be the linking cost between two agents.

Definition 1. A network g is pairwise-stable with transfers (PSt) if and only if:

(1) ∀ij s.t. gij = 0, bij(g + ij) < κ.

(2) ∀ij s.t. gij = 1, bij(g) ≥ κ.
8One problem with the use of pairwise stability in this context is that pairwise stable networks often fail

to exist. (see Bramoullé and Kranton (2007)).
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For any i, an improving switch is a link ih /∈ g such for another link ij ∈ g, v(si(g − ij +

ih)) + v(sh(g − ij + ih)) > v(si(g)) + v(sj(g))

Refinement. A PSt network g is switch-resistant iff, for any i and any ij ∈ g, there exists

no improving switch ih such that bih(g − ij + ih) > κ

Two agents will form a link if the relative benefit of forming the link is equal to or greater

than the linking cost. Otherwise, they will not form it. Moreover, this link will be switch-

resistant if and only if there is no stable improving switch. That is, even if there is more

utility to be shared between two agents on this link, once it is formed its relative utility

will be less than the link cost κ. In the current setting, all connected agents have the same

increasing utility. Therefore,

Lemma 1. A network g is switch-resistant pairwise-stable with transfers if and only if:

(1) ∀ij s.t. gij = 0, bij(si(g + ij)) < κ.

(2) ∀ij s.t. gij = 1, bij(si(g)) ≥ κ and ∀ih 6= ij s.t. gih = 0, if sh(g − ij + ih) ≥ si(g)

then bih(si(g − ij + ih)) < κ .

For ease of reading, I will use " stability" to designate "switch-resistant pairwise stability

with transfers". Observe that when a link is removed, either this link is not a bridge and the

components are unaffected, or this link is a bridge, and removing it cuts a component into

two sub-components. The first implication is that:

Lemma 2. If κ > 0, any stable network g is a forest. Equivalently, any component of a

stable network is a tree.

This property is shared by every network model where the benefits only depend on the

size of the components.

Let i and j be to linked agents in a component of size s in the network g. Then s =

si(g − ij) + sj(g − ij). The relative benefit of the link ij is written as follows:

bij(s, s
j(g − ij)) = 2v(s)− v(s− sj(g − ij))− v(sj(g − ij)).
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For a given component, define a loose-end as an agent that has one and only one link. If a

component is a tree, then it has at least two loose ends. A loose-end link will be called a

loose-end link. On a tree, if a link ij is a loose-end link, then the size difference between the

two components obtained by removing ij is equal to |si(g− ij)−sj(g− ij)| = s−2. Also, let

define a middle link as a link such that after its removal creates two new components of sizes

that differ by at most one agent. Formally, for a link ij in the component of size s in the

network g, |si(g− ij)− sj(g− ij)| ∈ {0, 1}. Note that not every tree have a middle link (the

star has none while the line has at least one). Note also that there is no difference between

a loose-end link and a middle link up to components of three agents. For convenience, I will

use the term "loose-end link" to refer to this type of link when the distinction is not clear.

Therefore, a middle link can exist for components of four or more agents.

Consider a component of size s in a network g and two agents i, j with a link in this

component. Ranking the relative benefit generated on a tree is equivalent to studying how

sj(g − ij) affects bij(s, sj(g − ij)).

∂bij(s, s
j(g − ij))

∂sj(g − ij) = 0⇔ ∂v(s− sj(g − ij))
∂(s− sj(g − ij)) =

∂v(sj(g − ij))
∂(sj(g − ij))

∂bij(s, s
j(g − ij))

∂sj(g − ij) = 0⇔ sj(g − ij)) =
s

2

−∂
2v(s− sj(g − ij))
∂ (s− sj(g − ij))2

− ∂2v(sj(g − ij))
∂(sj(g − ij))2 ≥ 0.

thus, the relative benefit of a link ij in a component of size s is the smallest when si(g− ij) =

sj(g− ij) = s/2. This also implies that the relative benefit of a link between two agents i, j,

decreases with the difference between sizes of the two trees obtained by cutting the link ij,

|si(g− ij)−sj(g− ij)|. Therefore, on a given tree, the maximum relative benefit is generated

on a loose-end link. While, if it has on, the middle link bring has the smallest relative benefit.

Denote b(s) and β(s) respectively as the relative benefit of a loose-end link and the relative

benefit of a middle link on a component of size s. Thus

b(s) = 2v(s)− v(s− 1)− v(1) and β(s) = 2
(
v(s)− v(

s

2
)
)

Lemma 3. For any agents i, j with a link in a component of size s ∈ [1, n] in a network g, the
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relative benefit bij(s) decreases with |si(g − ij)− sj(g − ij)|. Therefore, b(s) ≥ bij(s) ≥ β(s).

Lemma 3 has important implications. First, it implies that if a tree of size n with a middle

link is stable, then any tree of size n is stable. Furthermore, if a forest in which every tree has

a middle link is stable, then any network obtained by replacing every tree in that forest with

any other tree of the same size is stable. Suppose that there is a stable tree of size n. Then,

since each link on a star is a loose-end link, the star of size n is also stable. Suppose that there

is a non-empty stable forest. Then, by the same logic, the network obtained by replacing

each tree in the forest with a star of the same size is stable. This is because, for a given

number of agents, the star is the tree for which the relative benefit of each link is maximized.

Thus, knowing how b and β vary with s helps to characterize stable networks. Let us define

the following two network structures. A network is a s-quasi-uniform forest if all but one of

its components is a tree connecting s individuals, and the remaining component is either a

singleton or a tree connecting s or fewer individuals. A network is an s-quasi-uniform star

forest, if all but one of its components is a star connecting s individuals, and the remaining

component is either a singleton or a star connecting s or fewer individuals. Also, define bxc
as the floor value of the real number x, i.e., the largest integer less than or equal to x. I

define the component sizes s and s as follows:

s := max{bsc : b(s) = κ} and s := max{bsc : β(s) = κ}.

They each represent the floor value of the maximum component size for which the relative

benefit of a loose-end link b(s) and the relative benefit of a middle link β(s) are equal to the

linking cost κ.9 I show that key features of stable networks depend on how the functions b

and β vary with s. Since I use a refinement of the PSt criteria, I start by presenting the

necessary condition a PSt network needs to satisfy for every possible value of the linking cost

κ.

Let us first focus on the function b(s). Note that this function also expresses the relative

benefit of each link in a star of size s. For a community of n agents, let us assume that b(s)

is non-increasing in s, which also implies that β(s) is non-increasing in s. First, note that
9s depends on κ. For the sake of simplicity, this is mentioned
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κ > b(2). Then the empty lattice is the unique PSt network. Now consider the case where

κ < b(n) then, the star is PSt. The set of PSt consists only of forests and trees, and the

empty network is never PSt in this case. Now suppose κ ≤ b(2) and κ ≥ b(n). Then there

exists s ≥ 2 such that the s-quasi-uniform star forest is PSt. Furthermore, a PSt network

is a forest where the size of each tree is less than or equal to s. If κ < b(n), the star is PSt.

Also, a PSt network is a forest. I now check if these PSt network are switch resistant. This is

equivalent to finding PSt networks where there are no stable improving switches. It is worth

noting that in this setting, a switch is considered to be improving for an agent i if he or she

ends up in a larger component. Let us start with the case where κ < b(n) and the star is

PSt. I claim that a stable network is a tree of size n. If instead there is more than one tree,

then there exists a stable improving switch (a loose end in one tree can cut its link and form

a new one in a larger tree). Furthermore, the star of size n is always stable. If s exists and

is smaller than n, then no stable tree has a middle link (a middle link can not be stable in a

component that big, thus the line of size n is not stable). If s is equal to n or does not exist,

then every tree is stable. If κ ≤ b(2) and κ ≥ b(n), then a stable network has more than one

component and the size of each component is less than or equal to s. Suppose that the stable

network g has at least two components. Let agents i and h be in two different components

such that si(g) ≤ sh(g) ≤ s. If sh(g) ≤ s − 1, then for any loose-end in component si(g),

there is a stable improving switch (delete the link in the initial component and form a link

with any agent in a component of size sh(g)). This is a contradiction. Thus, if g is stable,

for any pair of components, the size of the largest component is s. Only networks such that

the size of all but one component is s, and the size of the remaining component is less than

or equal to s, satisfy this condition (s-forests). Thus, there is always a stable network and

it is such that every component except one is a star of size s and the size of the remaining

component is either a singleton or a star of size less than or equal to s (s-quasi-uniform star

forests). If κ ≤ b(2) and κ ≥ b(n), then κ ≤ β(2) and κ > β(n). So s exists and if s ≤ s− 1,

then there is no middle link in any component in a stable s forest (thus no network with a

line as component is stable). If s = s, then every s forest is stable. Finally, for κ > b(2),

there are no improving switches, and the empty network is the unique stable network.

Now, suppose that b(s) is non-decreasing in s. First, consider that κ > b(n). Then the
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empty network is the unique PSt network. And for κ < b(2), the star is PSt. Moreover, a

PSt network is a forest. Now suppose κ ≥ b(2) and κ ≤ b(n), then the star is PSt. Also,

a PSt network is a forest where each tree is of size s ≥ s. Using the same strategy as

before helps showing that for κ > b(n), the empty network is the unique stable network. For

b(n) ≥ κ ≥ b(2), both the empty network and the star are stable. Moreover, a non-empty

stable network is a tree. If β(s) is non-increasing, since middle links exist for components

of more than three agents and κ ≥ b(2), s may exist. If it is the case and s ≤ n − 1, then

no stable tree has a middle link and the line of size n is not stable. If s = n , then every

tree is stable. If s does not exist and β(n) < κ, then no stable tree has a middle link. If

s does not exist and β(n) > κ, then every tree is stable. If β(s) is non-decreasing and s

exists, then every tree is stable (since every non-empty stable is a tree and the line of size

n ≥ s is stable). If s does not exists, then a stable network is a tree without middle link. For

κ < b(2), the star is stable and a stable network is a tree. In this case, if s exists, then no

tree with a middle link is stable. If it does not exist, then every tree is stable. In the next

result, I focus on b(s) since it is enough to have a proper characterization of stable network.

Proposition 2. Consider a society of n agents and a linking cost κ > 0.

(1) Suppose that b(s) is non-decreasing.

(a) For κ > b(n), the empty network is the unique stable network.

(b) For b(n) ≥ κ ≥ b(2), both the empty network and the star are stable. Moreover, a

non-empty stable network is a tree.

(c) For κ < b(2), the star is stable and a stable network is a tree.

(2) Suppose that b(s) is non-increasing.

(a) for κ > b(2), the empty network is the unique stable network.

(b) For b(2) ≥ κ ≥ b(n), the s-quasi-uniform star forest is stable and a stable network

is s-forest.

(c) For κ < b(n), the star is stable and a stable network is a tree.
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All the results presented in this section hold for any increasing and concave utility function

v.

Notice that the relative benefit of a link is the sum of the utility gains of both agents

involved. In the case of a loose-end link, the relative benefit can be decomposed as follows

b(s) = v(s)− v(1) + v(s)− v(s− 1).

It is the sum between the utility gain of a loose-end (v(s)− v(1)) which always increases

with s and the utility gain or her neighbour (v(s)− v(s− 1)) which always decreases with s.

In the next section, a key step to characterize stable networks will be to determine whether

the utility gain of the loose-end grows faster with s than the utility gains of her neighbour

decreases with s.

5 Stable networks and formal insurance price

In this section, I characterize stable networks for different levels of formal insurance prices.

When the price of insurance is lower than or equal to the actuarial price, the empty network

is the unique stable network. When the price of insurance is larger than the actuarial price,

the effect of the price on risk-sharing networks is non-monotonic. In particular, I find that

stable networks may have more links when the insurance price is lower.

Let us rewrite Corollary 1 written in terms of price. Note that the threshold size s̃ ∈
(0,+∞) and decreases in p. Therefore, for any component of size s, there is a unique price

ps such that s̃(ps) = s.

Corollary 3. Consider a component of size s. For p > µ there exists a price ps such that

if p ≥ ps the equilibrium coverage rate x∗i (s) = 0 and if p < ps the equilibrium coverage rate

x∗i (s) > 0. This price is

ps = µ+
λσ2

s
,

and it decreases with s.

The price ps is the reservation price of an agent in a component of size s, i.e., the price

beyond which an agent in a component of size s will prefer not to take out formal insurance.
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This threshold price decreases with the size of a component. This implies that for a com-

ponent large enough, the reservation price tends towards the actuarial price µ. Moreover,

s < s̃(p) is equivalent to p ∈ (µ, ps), and s ≥ s̃(p) is equivalent to p ≥ ps. This formulation

is better suited in the present context where the network is endogenous.

In what follows, I will study stable networks for four sets of pricing covering all the possible

cases. Refer to the first one as the case of high prices (it is equivalent to having p ≥ p1). This

situation represents the common hypothesis used in the current literature on risk-sharing

networks. Under this assumption, no agent regardless of the size of her component takes out

formal insurance. Denote the second case as the low prices case (when p ≤ µ) and the third

one as the relatively low prices case (when p ∈ (µ, pn) ). With this assumption, every agent

regardless of the size of her component, takes out insurance. I will refer to the fourth case as

the relatively high prices case (when p ∈ (pn, p1)). With prices in this set, agents in smaller

components take out formal insurance while those in bigger components do not subscribe.

5.1 Stable networks with high formal insurance prices

In this context, the price is so high ( p ≥ p1) that no agent takes out formal insurance.

This is equivalent to the case without formal insurance and agents can only rely on informal

risk-sharing. This is the most common assumption in the existing literature on risk-sharing

in networks. However, it is the first time that pairwise stability with utility transfer is used

as a stability criterion.

When x∗i (s) = 0, denote v2 the expected indirect utility obtained by agents in a risk-

sharing component of size s where

v2(s) = a− exp

{
−λ
(
y0 − µ− λσ2

2s

)}
.

The relative benefit of a loose-end link is then:

b(s) =− 2 exp

{
−λ
(
y0 − µ− λσ2

2s

)}
+ exp

{
−λ
(
y0 − µ− λσ2

2(s− 1)

)}
+ exp

{
−λ
(
y0 − µ− λσ2

2

)}
,
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and when the size of the component goes to infinity

b(∞) = − exp
{
−λ
(
y0 − µ

)}
+ exp

{
−λ
(
y0 − µ− λσ2

2

)}
.

There exists a critical size ŝ > 2 such that for s ≤ ŝ the relative benefit b(s) decreases with

s and for s > ŝ, it increases with s. Additionally, it holds that b(2) > b(∞). I can then

propose a characterization of stable network for high prices of formal insurance. For high

prices (p ≥ p1), let define sh := max{bsc : s < ŝ and b(s) = κ}. The next result follows from

Proposition 2.

Proposition 3. Suppose the price a formal insurance p ≥ p1. Then there exists a critical

size ŝ such that, b(s) decreases with s for s ≤ ŝ, and otherwise it decreases with s. Also,

b(2) > b(∞). Consider a society with n > ŝ agents and a linking cost k > 0.

(1) For κ > b(2), the empty network is the unique stable network.

(2) For b(2) ≥ κ ≥ b(ŝ), there exists sh < ŝ, such that

(a) if b(2) ≥ κ > b(n) the sh-quasi-uniform star forest is stable. Moreover, a stable

network is an s-forest.

(b) If b(n) ≥ κ > b(ŝ), both the sh-quasi-uniform star forest and the star are stable.

Moreover, a stable network is either a tree or an s-forest.

(3) For κ ≥ b(ŝ), the star is stable and a stable network is a tree.

The proof of this result is in the appendix (proof ). For small components (s < ŝ), the

relative benefit of a loose-end link decreases with size and then increases for s > ŝ. This is

because when s < ŝ the utility gain of the isolated agent (v(s)− v(1)) grows slower than the

utility gain of her neighbour, v(s) − v(s − 1). In fact, the utility gain of the isolated agent

grows with the size of the component. Therefore, for smaller component, the loose-end does

not gain enough to compensate the decrease in utility gain of her neighbour. The opposite

happens when s > ŝ. As the size of the component increases, the utility gain of the loose-end

grows faster and compensate the reduction in utility gain of her neighbor. Since v(s)−v(s−1)

21



converges to zero, one might expected that the utility gain of the loose-end may grow high

enough to compensate the decrease in utility gain of her neighbor. However, Proposition 3

shows that the limit of v(s) with s is not high enough for this to happen. Thus, the relative

benefit of a loose-end link is maximum for two agents. Moreover, it takes its minimum value

when the size of the tree equals ŝ. This threshold is defined implicitly and varies in the same

direction as the risk aversion λ and the variance of the shock σ2. But it does not depend on

the price of insurance.

Figure 2 illustrates how b(s) varies with s for high prices of formal insurance. I consider

an environment where y0 = 0.54, µ = 0.64, σ2 = 2.055, λ = 2.64 and p ≥ p1 = 5.335

2 4 6 8 10 12 14

1,675

1,680

1,685

1,690

s

b(
s)

Figure 2: Relative benefit of a loose-end link when the price of formal insurance is high

5.2 Stable networks with low and relatively low formal insurance

prices

When the price of formal insurance is low (p ≤ µ) or relatively low (p ∈ (µ, pn)), for any

agent regardless of the size of her component, the equilibrium coverage demand is strictly

positive. I first characterize stable networks in the low prices case. The indirect expected
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utility v(s) is constant. Therefore, the relative benefit of a loose-end link b(s) equals zero,

and there are no risk-sharing links:

Proposition 4. Consider a society with n > 2 agents, a price of formal insurance p ≤ µ

and a linking cost k > 0. Then, the empty network is the unique stable network.

This result is a natural consequence of the fact that agents take full coverage when the

price of formal insurance is lower than or equal to the actuarial price. There is no residual

risk to cover and no reason to create risk-sharing connections.

Now, let us consider the case of a relatively low price. It is equivalent to having p between

µ and pn, the reservation price of an agent in a component of size n. In this context, from

Corollary 2, we can express the expected indirected utility v1 as follows

v1(s) = a− exp

{
−λ(y0 − p+

(p− µ)2

2λσ2
s)

}
.

The relative benefit of a loose-end link is then equal to:

b(s) =− 2 exp

{
−λ(y0 − p+

(p− µ)2

2λσ2
s)

}
+ exp

{
−λ(y0 − p+

(p− µ)2

2λσ2
(s− 1))

}
+ exp

{
−λ(y0 − p+

(p− µ)2

2λσ2
)

}
.

When the price of formal insurance is relatively low, denote by srl := max{bsc : b(s) = κ}.
The next result shows how b varies with the size of the components and with the price of

formal insurance. It also shows how p affects srl.

Lemma 4. Consider a society with n ≥ 3 agents and a price of formal insurance p ∈
(µ, pn). Then b(s) increases with p. Assume a linking cost κ > 0 and the threshold price

p̂ = µ+ σ
√

2 ln 2.

(1) If p < p̂, then b(s) increases in s. Therefore, (a) for κ < b(2), the star of size is

stable. (b) For b(2) < κ < b(n) both the empty network and the star are stable. (c) For

b(n) < κ, the empty network is the unique stable network.

(2) If p > p̂, then b(s) decreases in s. Therefore, (a) for κ < b(n), the star is stable.

(b) For b(n) < κ < b(2), there exists a size srl such that the srl-quasi-uniform star forest is
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stable, and srl increases with p. (c) For b(2) < κ, the empty network is the unique stable

network.

The proof is in the appendix (proof ). When the price of formal insurance is relatively

low, there are two effects on b(s) as the price of formal insurance increases. First, the relative

benefit of links increases with the price of insurance, which incentivizes the formation of

links. As the price of insurance increases, the demand for formal insurance decreases in

each component. This suggests an increase in the proportion of risk that is uninsured for

each agent when they are isolated. Consequently, the relative benefit of each link within a

component increases.

Second, the price of insurance determines how b(s), the relative benefit of a link with a

loose end, varies with a component size s. To understand this effect, recall that the condition

on how the relative benefit of a loose-end link varies with the size of a component is equivalent

to determining whether the utility gain of a loose-end is increasing faster than the utility gain

of its neighbor is decreasing. If this is the case, then the relative benefit of the connection

increases with the size of the component. Otherwise, it decreases with s. When the price

of insurance is high (p ≥ p1), the critical size ŝ determines when this happens, as presented

in Proposition 3. However, for relatively low prices of formal insurance (p ∈ (µ, pn)), this

condition depends only on the value of p. This is due to the fact that for relatively low

prices, the effect of the size of an agent’s component on her consumption is linear and its

intensity depends on p. The intuition is that when p < p̂, formal insurance is more accessible.

Thus, forming the first link is not as important as it is when there is no formal insurance

(p ≥ p1). Therefore, for s < ŝ, the variation of b(s) with s is not driven by the utility

gain of the more connected agent at the loose end, but by the utility gain of the loose end.

Moreover, increasing the size of a component has little effect on reducing the demand for

formal insurance. Thus, the risk exposure induced by the reduction in demand is always

offset by the diversification gain induced by increasing the size of the component. When

p > p̂, formal insurance is less accessible. The fraction of uninsured risk for an isolated

agent is larger, and forming the first risk-sharing link brings high relative benefits. Thus, the

variation of b(s) with s is driven by the utility gain of the more connected agents. This is

also the case for s > ŝ, where instead of seeing b(s) increasing with s (as in the case of a high
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insurance price), we observe the opposite. This is due to the fact that increasing the size of a

component has a greater effect on reducing the demand for formal insurance. Therefore, the

risk exposure always dominates the diversification benefit. Thus, the increase in the loose

end’s utility gain does not compensate for the decrease in her neighbor’s utility gain.

Figure 3 and Figure 4 respectively illustrate how b(s) varies with s for relatively low prices

of formal insurance when p = 2.105 < p̂ ≈ 2.33 and when p = 2.6 > p̂ ≈ 2.33. I consider the

same environment as Figure 2, where y0 = 0.54, µ = 0.64, σ2 = 2.055 and λ = 2.64. Only

the price of formal insurance varies.
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Figure 3: Relative benefit of a loose-end
link when p = 2.105 < p̂ ≈ 2.33

2 4 6 8 10

90

95

100

105

110

s

b(
s)

Figure 4: Relative benefit of a loose-end
link when p = 2.6 > p̂ ≈ 2.33

Therefore, we can characterize stable networks, as detailed in Lemma 4, for any pair price

of formal insurance p and linking cost κ. Figure 5 illustrates this statement. I consider a

community with n = 6 where y0 = 2.09, µ = 0.444, σ2 = 9.91 and λ = 2.48.10 The dotted

line b2(p) represents how the relative benefit of a link between two isolated agents varies with

the price of formal insurance. The solid line shows the relative benefit of a loose-end link in a

component of size s = 6. We can then characterize stable networks for any couple (p, κ). For

example, for any pair (p, κ) in region B, both the empty network and the star of community

size n = 6 are stable.

Using Lemma 4, stable networks can be characterized at relatively low prices of formal

insurance. Denote bs(p), the function evaluating how the relative benefit of a loose-end link

10Figure 5 depicts the function bs(p) when the expected indirect utility function is v1(s)
30λ .
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Figure 5: Stable networks for every pair (p, κ). A: Empty network, B: Empty network and
Star of size 6, C: srl-quasi-uniform star forest, D: Star of size 6.

in a component of size s varies with p. For low prices of formal insurance, define p2rl and pnrl
as the prices where b2(p2rl) = κ and bn(pnrl) = κ, respectively. It is suggested that the empty

network is stable for p < p2rl, but unstable for p ≥ p2rl. Additionally, the star of size n is

stable for p ≥ pnrl but unstable for p < pnrl. For any linking cost κ, determining the ranking

between p2rl and pnrl enables the characterization of stable networks in response to variations

in the price of formal insurance p. This yields the following result.

Proposition 5. Consider a society with n ≥ 3 agents and a price of formal insurance p in

[µ, pn] such that p̂ < pn. Then, 0 < b2(p̂) < bn(pn) < b2(pn). Assume a linking cost κ > 0.

(1) For κ < b2(p̂), there exist two prices pnrl < p2rl such that

(a) if p < pnrl the empty network is the unique stable network.

(b) If pnrl ≤ p < p2rl, then both the empty network and the star are stable. Moreover, a

non-empty stable network is a tree.

(c) Finally, if p ≥ p2rl, the star of size and a stable network is a tree.
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(2) For b2(p̂) < κ < bn(pn), there exist two prices p2rl > pnrl such that

(a) if p < p2rl the empty network is the unique stable network.

(b) If p2rl ≤ p < pnrl, there exists a size srl such that the srl-quasi-uniform star forest

is stable. Moreover, a stable is an srl-forest and srl increases with p.

(c) Finally, if p ≥ pnrl, the star is stable and a stable network is a tree.

(3) For κ > b2(pn), the empty network is the unique stable network.

Proposition 5 allows, for relatively low prices of formal insurance, to evaluate the impact

of a price reduction on the structure of stable networks. If the reduction in the price of formal

insurance is large, leading to p ≤ µ, then by Proposition 5, the only stable network is empty.

A large price reduction leads to an extreme form of crowding out: agents buy enough formal

insurance to be fully insured and do not form any costly risk-sharing relationships.

The interactions between formal and informal insurance become more intricate with

smaller price reductions. If κ lies between b2(p̂) and bn(pn), then p̂ < prl2 < prln . Thus, a

price reduction such that p lies between prln and pn does not crowd out stable networks: al-

though agents will purchase more formal insurance, the relative benefits of loose-end links

are still high.11 Thus, the price reduction is insufficient to encourage them to abandon their

risk-sharing connections. For a price reduction such that p lies between prl2 and prln , the size

of the largest component progressively decreases from n to 2 as the price of formal insur-

ance decreases. Agents buy more formal insurance, which reduces the appeal of risk-sharing

arrangements. Since p̂ < prl2 < prln , the relative benefit of a risk-sharing link decreases with

the size of component s.12 Therefore, if the price falls between prl2 and prln , agents decrease

the number of links they have, resulting in smaller components in stable networks. Thus,

formal insurance partially crowd-out the risk-sharing network. For a price reduction such

that p is less than prl2 , formal insurance completely crowds out the risk-sharing network.

Since κ exceeds b2(p̂), the relative benefit of a risk-sharing link is insufficient to encourage

link formation. As a result, agents rely solely on formal insurance.
11Links other than loose-end links may become unstable following a price reduction where prln < p < pn.

Nonetheless, agents have the ability to make stable improving switches, resulting in a stable star structure.
See Proposition 2.

12According to Lemma 3, loose-end links provide the highest relative benefit on a tree. Therefore, as their
relative benefit diminishes, so does the benefit of all other links.
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When the value of κ drops below b2(p̂), it holds that prln < prl2 < p̂. When the price exceeds

p̂, the relative benefit of a loose-end link decreases as the component size, s , increases.

Nevertheless, since the linking cost, κ, is sufficiently low, a price reduction such that p lies

between p̂ and pn, leave the structure of stable networks unchanged. Furthermore, larger

reductions where p falls between prln and prl2 may still not lead to crowding out in the risk-

sharing network. Remember that for p < p̂, the relative benefit of a loose-end link, b(s),

increases with the size of a component, s. Therefore, for a price larger than pnrl and lower

than p2rl, it comes from Proposition 2 that both the empty network and the star are stable.

I illustrate in Figure 6 how the geometry of stable networks may vary with insurance price.

Take the same parameters as figure 5 , n = 6, y0 = 2.09, µ = 0.444, σ2 = 9.91 and λ = 2.48.

Assume linking costs lower than or equal κ < b2(p6 = 4.54) = 2.87. The stable risk-sharing

networks are impacted by a decrease in the price of formal insurance, as seen through the

reduction of p from p6 = 4.54 to µ = 0.444. When p falls slightly below p6 = 4.54, the star

of size 6 remains stable. If the linking cost κ is greater than b2(p̂) = 1.37, then the size of srl

reduces with p, and the srl-quasi-uniform star forest gradually becomes an empty network.

However, a price reduction of the same amount will not have the same effect if κ is less than

b2(p̂) = 1.37. Only a significant reduction will result in the crowding out of the network. As

shown in Figure 6, an agent’s tone lightens as the size of her component decreases.

prl2 prl6

p
p6rl p2rl

p6µ

κ

Figure 6: Stable network for different levels of prices

The region with relatively low prices of formal insurance is relevant for insurers. Indeed,

they can have the community take out formal insurance while making a positive profit.
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5.3 Stable networks with relatively high formal insurance prices

In the two previous sections, I characterized stable networks when, regardless of the size

of their component, either all agents take out formal insurance or none of them do. What

happens when the price is such that only agents in smaller components have a positive

demand for formal insurance? In this section, I characterize stable networks in such a context.

Remember that

v1(s) = a− exp

{
−λ(y0 − p+

(p− µ)2

2λσ2
s)

}
and v2(s) = a− exp

{
−λ
(
y0 − µ− λσ2

2s

)}
.

Formally, for a given price p ∈ (pn, p1), the relative benefit of links in a star of size s is:

b(s) =


brl(s) = 2v1(s)− v1(s− 1)− v1(1) for s ≤ s̃

brh1(s) = 2v2(s)− v1(s− 1)− v1(1) for s̃ ≤ s ≤ s̃+ 1

brh2(s) = 2v2(s)− v2(s− 1)− v1(1) for s ≥ s̃+ 1

It follows from Lemma 4 that brl(s) increases with s for p < p̂ and decreases with s

otherwise. Since v1(1) does not vary with s, the variation of brh2(s) with s is given by Lemma

3. Using these results, one can determine how brh1(s) varies with s, and by extension, how

b(s) varies with s. Note also that v1(s) decreases with p (since an increase in the price of

formal insurance implies more risk exposure). Using Lemma 4 to complete the previous

observation helps to determine how the relative benefit of a loose-end b varies with the price

of formal insurance p. Note that since the variation of brh2(s) with s is given by Lemma 3,

for any formal insurance price p, the value of brh2(s) is minimized at s = ŝ. Remember that

ŝ > 2 and that p̂ = µ+ σ
√

2 ln 2.

Lemma 5. Consider a society with n > ŝ agents and a price of formal insurance p in (pn, p1).

Then b(s) increases with p. Moreover, there exists p̂1 < p̂ such that:

(1) If p ≤ p̂1, b(s) increases with s. (2) If p > p̂, b(s) decreases for s ≤ ŝ and then

increases. (3) For p̂1 < p ≤ p̂, b(s) reaches a local maximum at ŝ1 in [s̃, s̃ + 1) and a local

minimum at ŝ ≥ s̃+ 1 such that ŝ1 converges to ŝ as p tends to p̂1.
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The proof of this result is relegated to the appendix (proof ). Note that ŝ1 is implicitly

defined. Lemma 5 shows the persistence of the two effects of the price of formal insurance p,

on the relative benefit of loose-end link b(s), and thus on the incentive to form risk-sharing

links. First, the relative benefit of links increases with the price of formal insurance, as

shown by Lemma 4. This is the direct effect of formal insurance on the incentives to form

risk-sharing links. As the price of insurance decreases, the portion of uninsured risk for each

agent if they were isolated decreases. There will be less risk to be mitigated by informal

insurance institutions. This reduces the incentive to form risk-sharing link.

Second, the price of insurance determines how the relative benefit of a loose-end link b(s),

varies with the size of a component, s. Recall that p̂ is the critical price above which b(s) in

a small component (where everyone has a positive demand for formal insurance) is driven by

the utility gain of the more connected agent on a loose-end link. This price is higher than

p̂1. Therefore, if the price of formal insurance is between pn and p̂1, it reduces the need to

create the first link for an isolated agent. Thus, the variation of b(s) with s is driven by the

utility gain of the loose-end.

If the price of formal insurance is between p̂1 and p̂, Lemma 5 states that the value of ŝ1

converges to ŝ as the price of formal insurance tends to p̂1. The two values are the same when

the price of insurance is equal to p̂1. However, since the value of ŝ remains constant with p,

it follows that as the insurance price approaches p̂, the variation of b(s) with the size s of the

component mirrors its variation with s in the high-price insurance scenario (p ≥ p1). For this

price level, the first link does not generate a high enough relative benefit, and the variation of

b(s) is driven by the utility gain of the loose end for a component size less than ŝ1. However,

since ŝ1 is larger than s, the component size above which the demand for formal insurance is

zero, the diversification effect is outweighed by the increase in risk exposure. Therefore, the

utility gain of the more connected agent on a loose-end link drives the variation of b(s) with

s ∈ (ŝ1, ŝ). For component sizes above s ≥ ŝ, the increase in utility gain of the loose-end is

high enough to compensate for the decrease in utility gain of her neighbor.

In the last region, the price of formal insurance price p, is above the critical price p̂ and

below the reservation price of an isolated agent p1. The variation of b(s) with s is then driven

by the utility gain of the more connected agent on a loose-end link for s less than ŝ. The
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first link an agent creates generates the highest relative benefit despite the fact that she can

buy for insurance. Since the price of insurance is relatively high, the uninsured portion of

her risk, after she would purchase formal insurance, is high enough to increases the incentive

to create the first link. For a component of size above ŝ, we are in the case without formal

insurance and the variation of b(s) is driven by the utility gain of the loose-end.

Using Lemma 5, I provide a detailed characterization of stable networks for each level of

linking cost κ in Appendix (see Lemma 6). A stable network is either the empty network, a

tree or an srh-forest with srh.

I can then propose a characterization of stable networks for different levels of formal

insurance price p. Remember that ps is the reservation price of an agent in a component

of size s. Remember also that bs(p) is the function that evaluates how the relative benefit

of a loose-end link in a component of size s varies with p. For relatively high prices, define

p2rh, p
ŝ1
rh, p

ŝ
rh and pnrh respectively as the prices for which b2(p), bŝ1(p), bŝ(p) and bn(p) are

equal to κ. When p < p2rh, the empty network is stable. Otherwise it is not. When p < pnrh,

the star is stable. Otherwise it is not. When p > pŝ1rh, the srh-quasi-uniform star forest is

stable. Otherwise, it is not. Finally, when p < pŝrh, the srh-quasi-uniform star forest is stable.

Otherwise, it is not. For any linking cost κ, determining the ranking between p2rh, p
ŝ1
rh, p

ŝ
rh and

pnrh allows to characterize stable networks in response to the variations in the price of formal

insurance p. It follows from Lemma 5 that ŝ = ŝ1 at an insurance price equal to p̂1, and that

b2(pn) < bŝ(p̂1) < bn(pn). It also follows that bŝ(p1) < bn(p1) < b2(p1). I define an s-uniform

tree-singleton forest as a forest where every network is either a tree of size s or a singleton.

Also define srh := max{bsc : s < ŝ and b(s) = κ} and srh := min{bsc : s < ŝ and b(s) = κ}

Proposition 6. Consider a society with n > ŝ agents, a price of formal insurance p in

[pn, p1] and a linking cost κ > 0. Assume that b2(pn) < bŝ(p̂1) < bn(pn) < bŝ(p1) < bn(p1) <

bŝ1(p̂) < b2(p1)

(1) For bn(pn) < κ < bŝ(p1), there exists four prices pnrl < p2rl < pŝ1rl < pŝrl such that

(a) if p < pnrl, the empty network is the unique stable network.

(b) If pnrl < p < p2rl, both the empty network and the star are stable. Moreover, a

non-empty stable network is a tree.
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(c) If p2rl < p < pŝ1rl , the empty network, the star are stable and any srh-uniform star-

singleton forest is stable. An srh-quasi-uniform star forest is stable if and only

if the size of the smallest component is larger than or equal to srh. Moreover, a

non-empty stable network is either a tree, an s-uniform tree-singleton forest or an

srh-forest, if and only if the size of the smallest component is larger than or equal

to srh.

(d) If pŝ1rl < p < pŝrl, both the star and the srh-quasi-uniform star forest are stable.

Moreover, a stable network is either a tree or an srh-forest.

(e) If p ≥ pŝrl, the star is stable and a stable network is a tree.

Proposition 6 complements Proposition 5, providing an overall analysis of the impact

of insurance price reductions on the structure of stable networks. It presents the cases for

which there is multiplicity in the size of components in stable networks. When κ lies between

bn(pn) and bŝ(p1), if the price of formal insurance is set between pŝrl and p1, the size of the

stable risk-sharing network stay unchanged compare to the case with high prices. Every pair

of agents in the community are path connected. However, since the relative benefit of a

loose-end link b(s), decreases with the price of formal insurance p, the average length of a

path between every pair of agents in a component of a stable network reduces as p decreases

in this range.

If the price of insurance is set between pŝ1rl and p
ŝ
rl, there is multiplicity in the size of com-

ponents at the equilibrium. A stable network can be a tree connecting the entire community

or an srh-forest. For instance, if the initial network is a line, then after the introduction of

formal insurance, a stable network can be an srh-forest. The average path length between

two agents is too large for the structure to survive the introduction of formal insurance at

this level of price. However, if the initial network is a star, it will still be stable after an

introduction of formal insurance at this level of price. Thus, for the same price of formal

insurance, we will observe on average over the population, two different level of demand for

formal insurance, solely due to the difference in the structure in the initial networks. Agents

in the star will purchase less formal insurance compare to the one in an srh-forest since they

can rely on the entire community.
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If the price of insurance is set between p2rl and pŝ1rl , there is multiplicity in the size of

components at the equilibrium and more possible stable networks. Therefore, for the same

price of formal insurance, one can either observe a small demand (in the case agent are in

a tree), or a higher demand formal insurance (in the case the network is totally crowd-out).

Also, for stable network that is an s-uniform star-singleton forest or an srh-forest, agents in

the same society will purchase different level of formal insurance. Those in bigger component

will purchase none or less formal insurance than agents in smaller components. For this range

of prices, even if a price reduction that does not affect the size of the largest component in a

stable network, the average length path decreases. The analysis holds for p between p2rl and

pnrl. However, there are less possibilities. The stable network is empty or minimally connected.

And as the price decreases in this region of prices, the average path length between two agent

decreases.

By Lemma 4 and Lemma 5, we know that the reduction of the price of formal insurance

reduces the relative benefit of any link in a risk-sharing network. A diameter of component

is the longest shortest path between any two agent in this component. Reducing the price of

insurance will either only reduce the diameter of a the largest component in a stable network

without affecting its size, or it will also reduce it. Thus, the closer the shape of the initial

network is from the start, the more robust it will be to the introduction of formal insurance.

On the other side, the closer this shape is from the line, the more it will be vulnerable to the

introduction of formal insurance. Moreover, the size of the smallest component in a stable

network is non-monotonic with the price of formal insurance, it increases then decreases.

Corollary 4. The size of the largest component in a stable network is non-decreasing with

the price of formal insurance p. The size of the smallest component increases then decreases

with p. The smaller, the diameter of the largest component in an initial stable network, the

more robust it is to the introduction of formal insurance.

6 Conclusion

In conclusion, this study has delved into the dynamics of risk-sharing networks in impover-

ished regions, shedding light on the intricate relationship between formal insurance mecha-
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nisms and traditional social safety nets. The analysis has demonstrated that formal insurance

significantly influences the structure of social networks, revealing several key insights.

Firstly, as the price of formal insurance decreases, the incentive for individuals to form

risk-sharing links diminishes, confirming the notion that risk-sharing networks and formal

insurance are substitutes. Interestingly, the price of insurance also plays a crucial role in

shaping agents’ incentives to form links, particularly in relation to the size of their network

components.

Secondly, the study has shown that high linking costs lead to a gradual unraveling of the

risk-sharing network as formal insurance prices drop. Conversely, low linking costs result in

a rapid transition from a fully connected network to an empty network. Furthermore, for the

same price levels of formal insurance, stable networks can exhibit varying structures.

Thirdly, the analysis has extended to welfare considerations, revealing that the Nash

equilibrium of the insurance game is constrained Pareto efficient. Individual incentives to

adopt formal insurance align with social welfare due to the shared costs among members

of a component and any payments made by the insurance company. This alignment has

important implications for community welfare.

Overall, this research provides critical insights into how social networks, serving as infor-

mal insurance mechanisms, respond to the introduction of formal insurance. The findings

offer valuable contributions to the literature on risk-sharing networks, the impact of markets

on informal institutions, and the interplay between informal transfers and formal insurance.

In particular, the study highlights the complexity of these interactions and the significance of

factors such as the price of formal insurance and linking costs in shaping network structures

and community welfare.
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A Appendix

A.1 Proof of proposition 1

max
xi1

u(s,x) = − exp

{
−λ
(
y0 − px∗i (s)− µ(1− x∗i (s))−

λσ2

2s
(1− x∗i (s))2

)}
(3)

Agent i expected utility increases with his coverage rate imply that

∂u(s,C)

∂Ci1
≥ 0⇔ −λu(s,x)

(
−p− µ

s
+
λσ2

s2
(1− xi)

)
≥ 0

⇔ xi ≤ 1− s

λσ2
(p− µ).

(4)

Thus for any agent in a component of size s, the unique coverage rate that maximizes the

expected utility is x∗(s) = 1 − s
λσ2 (p − µ). To complete the proof, note that the coverage

rates lie between (0, 1).

A.2 Proof of corollary 2

v(s) = −exp
{
−λ
(
y0 − (px∗i (s) + µ(1− x∗i (s)))−

λσ2

2s
(1− x∗i (s))2

)}
v′(s) = −λv(s)

(
−∂x

∗
i (s)

∂s
(p− µ) +

λσ2

2s2
(1− x∗i (s))2 +

λσ2

s

∂x∗i (s)

∂s
(1− x∗i (s))

)
.

If x∗i (s) ≤ 0,

v′(s) = −λv(s)

(
λσ2

2s2

)
> 0,

and

v”(s) = −λv′(s)
(
λσ2

2s2

)
+ λv(s)

(
λσ2

s3

)
< 0.

If 0 < x∗i (s) < 1 then −1−x∗i (s)
s

=
∂x∗i (s)

∂s
= −p−µ

λσ2 , thus the third term in v′ equals

(p− µ)2

λσ2
+
λσ2

2

(
p− µ
λσ2

)2

− λσ2

(
p− µ
λσ2

)2

=
(p− µ)2

2λσ2

and

v′(s) = −v(s)
(p− µ)2

2σ2
> 0
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. Therefore v is strictly increasing. Moreover,

v”(s) =− v′(s)(p− µ)2

2σ2
< 0,

thus v”(s) < 0 and v(s) is strictly concave. The smoothness comes from the fact that at s

the left-hand derivative equals the right-hand one.

A.3 Proof of lemma 3

b(s) = −2 exp

{
−λ
(
y0 − µ− λσ2

2s

)}
+ exp

{
−λ
(
y0 − µ− λσ2

2(s− 1)

)}
+ exp

{
−λ
(
y0 − µ− λσ2

2

)}
b′(s) = −v2(s)

(
λσ

s

)2

+
v2(s− 1)

2

(
λσ

s− 1

)2

b′(s) ≥ 0⇔ −v2(s)
(
λσ

s

)2

≥ −v2(s− 1)

2

(
λσ

s− 1

)2

⇔ 2

(
s− 1

s

)2

exp

{ −(λσ)2

2s(s− 1)

}
︸ ︷︷ ︸

h(s)

≥ 1

h′(s) =
2(s− 1)

s3
exp

{ −(λσ)2

2s(s− 1)

}
+

2s− 1

s4
(λσ)2

2
exp

{ −(λσ)2

2s(s− 1)

}
≥ 0

Moreover,

2h(2) =
1

2
exp

{−(λσ)2

4

}
< 1,

and

2h(∞) = 2.

Thus there exists a size ŝ such that for s ≤ ŝ ⇒ 2h(s) ≤ 1 and b(s) is decreasing and for

s > ŝ⇒ 2h(s) > 1 and b(s) is increasing.
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b(2) = 2 exp

{
−λ
(
y0 − µ− λσ2

2

)}
− 2 exp

{
−λ
(
y0 − µ− λσ2

4

)}
b(∞) = exp

{
−λ
(
y0 − µ− λσ2

2

)}
− exp

{
−λ
(
y0 − µ

)}
b(2) ≥ b(∞)⇔ exp

{
−λ
(
y0 − µ− λσ2

2

)}
− 2 exp

{
−λ
(
y0 − µ− λσ2

4

)}
≥ − exp

{
−λ
(
y0 − µ

)}
⇔ exp

{
(λσ)2

2

}
− 2 exp

{
(λσ)2

4

}
≥ −1

⇔
(

exp

{
(λσ)2

4

}
− 1

)2

≥ 0

Since the last line is always true with strict inequality, b(2) > b(∞). QED

A.4 Proof of lemma 4

To prove the first part of the result I write

b(s) = v(s)− v(s− 1) + v(s)− v(1).

Thus
∂b(s)

∂p
=

∂

∂p
(v(s)− v(s− 1)) +

∂

∂p
(v(s)− v(1)) .

Remember that p lies between µ and pn and that v(s) = −exp
{
−λ
(
y0 − p+ (p−µ)2

2λσ2 s
)}

.

The first term is positive if

∂

∂p
(v(s)− v(s− 1)) ≥ 0⇔ −v(s)

(
p− µ
λσ2

s− 1

)
≥ −v(s− 1)

(
p− µ
λσ2

(s− 1)− 1

)
. (5)

Note that when p lies between µ and pn, the coverage rate of any agent in any component is

strictly positive. Equivalently, s− 1 < s < s. Which implies that

s− 1 < s <
λσ2

p− µ︸ ︷︷ ︸
s

⇔ p− µ
λσ2

(s− 1)− 1 <
p− µ
λσ2

s− 1 < 0.
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Therefore,

−v(s)

(
p− µ
λσ2

s− 1

)
≥ −v(s− 1)

(
p− µ
λσ2

s− 1

)
≥ −v(s− 1)

(
p− µ
λσ2

(s− 1)− 1

)
.

Thus inequality 5 is verified. A similar argument can be used to show that ∂
∂p

(v(s)− v(1)) ≥
0 and b(s) ≥ ∂

∂p

(
v(s)− v( s

2
)
)
≥ 0. Hence b(s) increases with the price of insurance.

Now let us prove that the way b varies with s is determined by the price.

∂b(s)

∂s
≥ 0⇔ −2

(p− µ)2

2σ2
v(s) +

(p− µ)2

2σ2
v(s− 1) ≥ 0

⇔ 2 ≥ exp

{
(p− µ)2

2σ2

}
∂b(s)

∂s
≥ 0⇔ p ≤ µ+ σ

√
2 ln 2︸ ︷︷ ︸

p̂

I conclude the proof by using the implicit function theorem to determine how sh1 varies

with p;
∂sh1
∂p

= −
∂b(s)
∂p

∂b(s)
∂s

.

A.5 Proof of proposition 5

I start by proving the first affirmation. Lemma 4 established that if p < p̂, b is increasing

in s. let us assume that b(2) < κ and b(n) > κ. Then, there exists sh1 ≥ 3 such that

n < dsh1e ⇒ b(n) < κ and the star with n agents is not stable and n ≥ dsh1e ⇒ b(2) ≥ κ

and the star with n agents is eligible for stability. Moreover, no non-empty network is stable

for n ≤ dsh1e (If a non-empty network is stable, it has a stable component of size s and this

implies that in the star with s ≤ n agents, each link generated a positive net relative benefit,

which is not possible). If the number of agents n is larger or equal to dsh1e, for a network

to be eligible for stability, it has to be either empty or non-empty with the size of each of

its components larger than or equal to sh1 . The last characteristic a network must have to

be stable is the absence of stable improving switches for any agents. A link switch (or a

switch) is said to be improving if the sum of utilities on the new link is strictly higher than
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the sum of utilities on the link being substituted. In a component, every agent has the same

utility. This implies that, for three agents i 6= j 6= h in a network g such that gij = 1 and

gih = gjh = 0, a switch from ij to ih is improving if and only if si(g) < sh(g − ij + ih).

let us assume that n ≥ sh1 since otherwise only the empty network can be stable. Consider

the set of non-empty stable networks. I claim that the set of non-empty stable networks is

only composed of minimally connected networks. Assume there exists a stable network g with

at least two components. Consider a loose-end i in a component si(g) and an agent j such

that gij = 1. Consider an agent h 6= j such that sh1 ≤ si(g) ≤ sh(g) (since each component

exhibit internal stability). If h ∈ si(g), then sh(g − ij + ih) = sh(g) = si(g) and for agent

i switching from ij to ih is not improving. If h /∈ si(g), then sh(g − ij + ih) = sh(g) + 1 ≥
si(g) + 1 > si(g) and for agent i, switching from ij to ih is improving. Consequently, for any

leaf of the component si(g), there exists an improving switch (delete the link in the initial

component and form a link at the end of a tree, with any agent in the component of size

sh(g)). Moreover, those improving switches create links with positive net relative benefits,

since b(sh(g − ij + ih)) > b(si(g)) ≥ κ. This contradicts the definition. Therefore, if a non-

empty network is stable, it is minimally connected (a tree of size n). Moreover, if b(2) > κ,

then b(s) > κ for any s ≥ 2 and if a network is stable, then it is a tree of size n ≥ 2. If

b(n) < κ, then the empty network is the only stable network for any n ≥ 2. This concludes

the proof of the first part.

Now let us prove the second part of the proposition. Lemma 4 also established that if

p > p̂, b is decreasing in s. Suppose that b(2) > κ and b(n) < κ. Then, the empty network is

never stable as two isolated agents can always create a stable link. Since b is decreasing, there

exists sh1 ≥ 3 such that n > bsh1c ⇒ b(n) < κ and the star with n agents is not stable and

n ≤ bsh1c ⇒ b(n) ≥ κ and the star of size n is eligible for stability. Moreover, if a network

is stable, the size of each of its components is lower than or equal to bsh1c ( If a network is

stable, and it has a component of size s > sh1 , then the network obtained by transforming

this component into a star is also stable. There is a contradiction since no link in a star of

size s > sh1 generates a positive π).

To complete the characterization, let us look for networks where any improving switch

creates a link with a negative relative profit. Considering n ≤ sh1 , I claim that if a network
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is stable then it is a tree of size n. If instead, it has more than one tree, then there exists

an improving switch (a loose-end in a tree can cut its link and form a new one in a larger

tree), and this switch creates a network with a positive π. If n ≥ bsh1c, a stable network

has more than one component and the size of each component is lower than or equal to

bsh1c. Consider the stable network g with at least two components. Consider agent i and

h in two different components such that si(g) ≤ sh(g) ≤ sh1 . If sh(g) ≤ bsh1c − 1, then

for any loose-end in component si(g), there is a stable improving switch (delete the link in

the initial component and form a link with any agent in a component of size sh(g)). This

is a contradiction. Thus, if g is stable, for any pair of components, the size of the largest

component is bsh1c. Only networks such that, the size of every component except one is

bsh1c, and the size of the remaining component is lower than or equal to bsh1c, satisfy this

condition (forest of almost bsh1c). Thus, there is always a stable network and it is such that

every component except one is a star of size bsh1c and the size of the remaining star is lower

than or equal to bsh1c (quasi-uniform star forest of almost bsh1c). Other forests of almost

bsh1c can be stable. Furthermore, if b(2) < κ, then b(s) < κ for any s ≥ 2 and the empty

network is the only stable network. If b(n) > κ, then a stable network is a tree of size n ≥ 2.

A.6 Proof of lemma 5

Lemma 4 present how b(s) varies with s for p ∈ (µ, pn). Moreover, since v1(1) does not vary

with s, Lemma 3 gives how brh2(s) varies with s. Therefore, I only focus on brh1(s). For

s < s < s+ 1, the relative benefit is then written as follows:

brh1(s) =2v2(s)− v1(s− 1)− v1(1)

brh1(s) =− 2 exp

{
−λ
(
y0 − µ− λσ2

2s

)}
+ exp

{
−λ
(
y0 − p+

(p− µ)2

2λσ2
(s− 1)

)}
+ exp

{
−λ
(
y0 − p+

(p− µ)2

2λσ2

)}
.

The first order derivative is

b′rh1(s) = 2v′2(s)− v′1(s− 1)).
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∂brh1(s)

∂s
≥ 0⇔ 2

∂v2(s)

∂s
≥ ∂v1(s− 1)

∂s
∂brh1(s)

∂s
≥ 0⇔ −(λσ)2

s2
v2(s) ≥ −

(p− µ)2

2σ2
v1(s− 1)

∂brh1(s)

∂s
≥ 0⇔

(
s(p)

s

)2

≥ o(s)

2

with
o(s) =

v1(s− 1)

v2(s)
= exp

{
λ

(
(p− µ)2

2λσ2
(s− 1)− (p− µ) +

λσ2

2s

)}
o′(s) = λ

(
(p− µ)2

2λσ2
− λσ2

2s2

)
o(s).

Here s−1 < s ≤ s. Therefore, the term in o′(s) is positive for s ≥ s(p) = λσ2

p−µ . Thus o
′(s) ≥ 0

and o(s) is increasing in s. Moreover, notice that (p−µ)2
2λσ2 (s− 1)− p−µ

2
< 0 since s− 1 < s(p),

and λσ2

2s
− p−µ

2
≤ 0 since s > s(p), hence o(s)/2 ≤ 1/2. The function s(p)

s
is decreasing in s

and lower than or equal to 1 since s ≥ s(p) and is equal to 1 when s = s(p). Since the two

functions are monotonous, they intersect at most once. Therefore, for s ∈ [s, s + 1], either

brh1(s) is increasing in s or it increases then decreases in s.

Now, let us rank brl(s), brh1(s) and brh2(s). Since agents are risk-averse, for all sizes s

of component v1(s) ≥ v2(s). This implies that v1(s − 1) + v1(1) ≥ v2(s − 1) + v1(1) ≥
v2(s − 1) + v2(1) which combined with the previous inequality, gives brl(s) ≥ brh1(s) and

brh2(s) ≥ brh1(s). The ranking between brl(s) and brh2(s) is less trivial. First let us write

brl(s) − brh2(s) = 2v1(s) − v1(s − 1) − (2v2(s) − v2(s − 1)). Notice that brl(s) − brh2(s) =

v2(s−1)−v1(s−1) < 0, brl(∞)−brh2(∞) = −v2(∞) > 0 and brl(s) is monotonic. Thus, there

exists a unique size such that brl(s)− brh2(s) = 0 and before this size, brl(s) < brh2(s). Notice

that brl(s) − brh1(s) = 2(v1(s) − v2(s)), therefore, brl(s) − brh1(s) = b′rl(s) − b′rh1(s) = 0 and

brh2(s)−brh1(s) = v1(s−1)−v2(s−1), thus brh2(s+1)−brh1(s+1) = b′rh2(s+1)−b′rh1(s+1) = 0.

Therefore, since brl(s) ≥ brh1(s) and brh2(s) ≥ brh1(s), brh2(s) and brl(s) intersect for a size

in the interval (s, s+ 1). Remember that there exists a threshold size ŝ such that for s ≤ ŝ,

brh2(s) decreases and otherwise, it increases. The argument presented before induce that

s̄ + 1 ≤ ŝ. When s̄ + 1 = ŝ, b′rh2(s + 1) = b′rh1(s + 1) = 0. There is no more local extrema

and ŝ = ŝ1 is a saddle point.

When p > p̂, brl(s) decreases. Therefore, since brh2(s) and brl(s) intersect for a size in the

41



interval (s, s + 1), and on this interval either brh1(s) is increasing in s or it increases then

decreases in s, for p > p̂, brh1(s) can only decrease. If it was not the case, since b′rl(s) > 0,

brh1(s) will first decrease, then increase to decrease again. This contradict the behavior of

brh1(s) on (s, s + 1). Hence, b′3(s + 1) = b′2(s + 1) < 0 for p > p̂. When p < p̂, brl(s)

increases, then there are three cases. Either b′3(s + 1) is lower than zero, equal to zero or

larger than zero. Using the same argument as before, it appears that when b′3(s + 1) ≥ 0,

brh1(s) increases. As well, when b′3(s + 1) < 0, then brh1(s) increases first, then decreases.

Remark that,

v2(s)

v2(s+ 1)
= exp

{
λ(p− µ)2

2 (λσ2 + p− µ)

}
and

1

s
=
p− µ
λσ2

.

Thus, for p < p̂

b′3(s+ 1) ≥ 0⇔ 2 ≥ v2(s)

v2(s+ 1)

(
1 +

1

s

)2

⇔ ln 2 ≥ λ(p− µ)2

2 (λσ2 + p− µ)
+ 2 ln

(
1 +

p− µ
λσ2

)
b′3(s+ 1) ≥ 0⇔ ln 2− 2 ln

(
1 +

p− µ
λσ2

)
︸ ︷︷ ︸

α(p)

≥ λ(p− µ)2

2 (λσ2 + p− µ)︸ ︷︷ ︸
β(p)

.

Moreover, α(µ) = ln(2) > β(µ) = 0,

α′(p) = − 2

λσ2 + p− µ < 0 and β′(p) =
λ(2(p− µ)λσ2 + (p− µ)2)

2 (λσ2 + p− µ)2
> 0,

therefore, for p < p̂ there exists a price p̂1

b′3(s+ 1) ≥ 0⇔ p ≤ p̂1

b′3(s+ 1) < 0⇔ p > p̂1.

Proving the existence of p̂2, p̂3, p̂4 is easier. Since b increases with s for p < p̂1 and decreases

with s until ŝ for p > p̂, those thresholds necessarily exist.

Lemma 6. Consider p ∈ (pn, p1) and n large enough.

• If p < p̂1, then (a) for κ < b(2), the star is stable and any other stable network is a
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tree. (b) For b(2) < κ < b(n) both the empty network and the star are stable. Moreover,

any other stable network is a tree. (c) For b(n) < κ, the empty network is the unique

stable network.

• If p̂1 < p < p̂2, then (a) for κ < b(2), the star is stable and any other stable network is a

tree. (b) For b(2) < κ < b(ŝ) both the empty network and the star are stable. Moreover,

any other stable network is a tree.(c) For b(ŝ) < κ < b(ŝ1) the empty network, the sh2-

quasi-uniform star forest and the star are simultaneous stable. Moreover, a non-empty

stable network is either a tree or a sh2-forest. (d) For b(ŝ1) < κ < b(n) both the empty

network and the star are stable. Moreover, any other stable network is a tree. (e) For

b(n) < κ, the empty network is the unique stable network.

• If p̂2 < p < p̂3, then (a) for κ < b(ŝ), the star is stable and any other stable network is

a tree. (b) For b(ŝ) < κ < b(2), both the star and the sh2-quasi-uniform star forest are

stable. Moreover, a stable network is either a tree or a sh2-forest. (c) For b(2) < κ <

b(ŝ1), the empty network, the sh2-quasi-uniform star forest and the star are simultaneous

stable. Moreover, a non-empty stable network is either a tree or a sh2-forest. (d) For

b(ŝ1) < κ < b(n) both the empty network and the star are stable. Moreover, any other

stable network is a tree. (e) For b(n) < κ, the empty network is the unique stable

network.

• If p̂3 < p < p̂4, then (a) for κ < b(ŝ), the star is stable and any other stable network is

a tree. (b) For b(ŝ) < κ < b(2), both the star and the sh2-quasi-uniform star forest are

stable. Moreover, a stable network is either a tree or a sh2-forest. (c) For b(2) < κ <

b(n), the empty network, the sh2-quasi-uniform star forest and the star are simultaneous

stable. (d) For b(n) < κ < b(ŝ1), both the empty network and the sh2-quasi-uniform

star forest are stable. Moreover, a non-empty stable network is a sh2-forest. (e) For

b(ŝ1) < κ, the empty network is the unique stable network.

• If p̂4 < p < p̂, then (a) for κ < b(ŝ), the star is stable and any other stable network

is a tree. (b) For b(ŝ) < κ < b(n), both the star and the sh2-quasi-uniform star forest

are stable. Moreover, a stable network is either a tree or a sh2-forest. (c) For b(n) <
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κ < b(2), the sh2-quasi-uniform star forest is stable. Moreover, a stable network is a

sh2-forest. (d) For b(2) < κ < b(ŝ1), both the empty network and the sh2-quasi-uniform

star forest are stable. Moreover, a non-empty stable network is a sh2-forest. (e) For

b(ŝ1) < κ, the empty network is the unique stable network.

• If p > p̂, then (a) for κ < b(ŝ), the star is stable and any other stable network is a tree.

(b) For b(ŝ) < κ < b(n), both the star and the sh2-quasi-uniform star forest are stable.

Moreover, a stable network is either a tree or a sh2-forest. (c) For b(n) < κ < b(2), the

sh2-quasi-uniform star forest is stable. Moreover, a stable network is a sh2-forest. (d)

For b(ŝ1) < κ, the empty network is the unique stable network.

back to the discussion
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