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Abstract

Algorithms can optimize treatment allocation within an experimental design. They

can progressively identify the most beneficial treatment for the subjects and thus max-

imize the experiment’s overall impact. However, these designs raise concerns for exper-

imentalists and policymakers because they involve transferring decision-making to an

algorithm. Are adaptive experiments inherently fairer and thus a preferred choice over

traditional randomized controlled trials? In this paper, I propose a comprehensive ex-

amination of fairness by considering multiple criteria that can influence the researchers’

preference for one design over the other: the possibility to increase the benefits of the

experiment for the experimental subjects, the transparency of the decision rule, the ab-

sence of discrimination regarding the treatment allocation, the protection of individuals’

data. By summarizing and analyzing these distinct criteria through a utility model, I

discuss the relative fairness of adaptive experiments and standard randomized controlled

trials. Specifically, I show that these different designs align with extreme versions of the

fairness utility model, reflecting the pursuit of distinct fairness objectives within experi-

mental settings. I highlight intermediate solutions that can be pursued to reconcile and

balance different fairness objectives in experimental designs.
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1 Introduction

Individuals’ well-being can be significantly impacted by receiving medical treatment or being

subject to a specific public policy. While completely randomized experiments ensure equal

chances of receiving treatment, this unconditional equal opportunity alone may not suffice

to ensure the acceptability of experiments: as more data accumulates, it may become rel-

evant to consider increasing the number of individuals receiving treatment or, conversely,

discontinuing the treatment. Adaptive designs provide promising avenues for the progressive

allocation of treatments, addressing ethical concerns and avoiding sub-optimal treatments,

especially when there is a possibility to personalize the allocation of treatments. In this

paper, I explore the concept of fairness by suggesting that allowing an algorithm to optimize

treatment allocations during experiments could be more equitable for experimental subjects.

I put forward a tension in experimental contexts between the goals of maximizing individual

gains and issues of algorithm fairness, as studied in the machine learning literature.

Indeed, the hope of combining personalization and experimentation exploiting large

datasets has become a reality. Nonetheless and beyond what is technically possible, the

ethical implications associated with algorithmic decision-making have not yet been fully

examined in the field of economic and medical experimentation.

In this paper, I argue that the trade-off betweens different experimental designs can be

made based on fairness criteria towards the experimental subjects, but that a preference for

one or the other design requires a clear and complex expression of the objectives and fairness

criteria addressed. I model the choice of an experimental researcher or evaluation institution

with fairness preferences that take into account the interests of experimental subjects. The

objective of this work is to rethink the choice of experimental design regarding decision

theory and economics of justice.

This model shows that one can interpret the choices of experimental designs as optimiza-

tion solutions of extreme versions of the fairness objective function. I note that experimental

designs lead to a transfer of decision power for treatment allocation from a researcher to an

algorithm. A standard randomized controlled trial can be seen as a rudimentary algorithm,

consisting of a single instruction to assign individuals to treatment arms. Thus, common

concerns about algorithmic decision-making, such as transparency and the use of personal

data, may not arise due to the simplicity of the allocation rule, similar to a classical lottery

with a single draw per individual. In contrast, these concerns become relevant when the al-

location rule evolves during the experiment, where the decision rule is complex and based on

the observed outcomes, the shape of the welfare function, and sometimes the data subjects’

characteristics, as is the case with adaptive experiments. When allocation probabilities are

adjusted based on past data, considerations regarding algorithmic decision-making become

more prominent. I also argue that hybrid versions of these designs may be desirable to deal

with ethical conflicts in a world where several value systems coexist. In this way, I hope to
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contribute to a reflection on experimental ethics, value alignment with Artificial Intelligence

(AI), and the implementation of just policies.

The causal machine learning literature has recently made considerable progress in per-

sonalizing counterfactual estimation (see Knaus et al. 2021 for an overview). At the same

time, multi-armed bandits have been studied extensively to maximize the total impact of an

experiment, motivated by online learning problems, such as web search and ad placement (see

Bubeck and Cesa-Bianchi 2012 for a survey). Recently, a field of research in experimental

sciences has been investigating the possibility of importing these models in contexts where

evaluation and optimization would be two desirable ends of an experiment (e.g. Caria et al.

2020, Offer-Westort et al. 2021, Athey et al. 2021). By promising to progressively adapt

the strategy for allocating treatment arms during the evaluation, these models may appear

more acceptable to institutions and experimental subjects, while maintaining the scientific

objective of evaluating treatment effects.

At the same time, personalization cannot be achieved without the collection of individ-

ual data, which exposes the experimentalist to various criticisms, such as concerns about the

sometimes massive collection of data, the lack of transparency, potential algorithmic biases,

and other ethical considerations. Recently, these issues have indeed gained increasing signifi-

cance in the machine learning literature. Within the public debate, numerous applications of

machine learning, whether for decision-making or other purposes, have raised concerns. For

example, journalists Angwin et al. (2016) accused COMPAS, a tool designed to detect future

criminals, of discriminating against black people in the United States. Similarly, Amazon’s

AI recruitment tool was charged with discriminating against women by journalist Dastin

(2018) in Reuters. The concerns related to data collection and algorithmic decision-making

are being increasingly documented and discussed across academic fields. In computer sci-

ence, they have gained significant traction, notably through conferences that specifically

address fairness such as the ACM FAccT or AAAIC/ACM conferences. More recently, these

concerns have also gained attention in the field of economics, prompting reflection on the

place of AI fairness in these two domains (see Cowgill and Tucker 2019). Data collection

and algorithmic decision-making are also at the heart of a legal debate that has led to the

introduction of regulations such as the General Data Protection Regulation (GDPR) in the

EU.

It is important to note that there are many different approaches to fairness and that

there is no philosophical consensus on fairness. For example, Wachter et al. (2021) identifies

a “critical incompatibility between European notions of discrimination and existing work on

algorithmic and automated designs”. For practitioners, determining why an experimental

design would be more or less fair is therefore a real puzzle. Moreover, preferences of exper-

imental subjects regarding data-driven methods and algorithms versus a human allocation

rule are barely documented. The findings on human attitudes towards algorithms are still

inconclusive, with some studies suggesting a lack of trust in algorithmic decision-making
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(Bigman and Gray 2018, Gogoll and Uhl 2018) while Chugunova and Luhan (2022) suggests

a preference for the algorithm, based on a laboratory experiment.

In my paper, fairness refers to a practice or treatment that involves just and equitable

treatment without causing harm or discrimination. Formally, I will define fairness in the

context of experimental designs as a weighted combination of fairness metrics related to

(1) Maximizing short-term outcomes in line with welfare maximization, (2) Simplicity and

transparency of the treatment allocation rule, (3) Ensuring equal opportunities to receive

the treatment, and (4) Minimizing data collection. I argue that these criteria align with

fundamental principles in experimental ethics: experiments should benefit subjects, require

informed consent, prevent discrimination, and avoid putting subjects in harm’s way1. This

being said, “What is fair?” is a question that has been the subject of far too many philosoph-

ical discussions and confrontations of moral values for an explicit answer to be given. In this

discussion, I address common aspects that arise in the literature of economics, philosophy,

and (mostly European) law. However, the intention here is not to conclude the debate on

this question.

First, I propose a model of the researcher’s preferences that would be centered on con-

siderations of fairness to individuals while learning treatment effects. I will make explicit

different dimensions of this fairness. Second, I will interpret the objectives of the differ-

ent experimental designs as solutions of some extreme parameterizations of this preference

function. Finally, I will propose an illustration on simulated data.

2 The key elements of the model with multiple criteria of

fairness

2.1 Why fairness towards experimental subjects matters to an experimen-

talist

Collaboration with institutions or policymakers is often necessary for the implementation

of controlled evaluations. For them to take place, they must be perceived as acceptable by

the subjects of the experiment, since the attitude of data subjects and citizens towards the

experimental protocol can significantly influence its implementation. Thus, Dur et al. (2023)

show that politicians conform to voters’ appreciation of policy experiments to a large extent

using representative Dutch survey data. They also show that concerns about the unfairness

of the experiments, because for a given period, people and firms are treated unequally, is

1Note that the term “fairness” is preferred to the notion of “social justice” in this context for two reasons.
First, I will focus on fairness to experimental subjects and the direct impact of the experiment, which excludes
a more general discussion of the ultimate distribution of resources among all individuals in a society, which is
an important topic in redistributive justice. However, there is a fine line between the two terms and they can
sometimes be used synonymously. Second, “fairness” is a term that has recently taken hold in the machine
learning literature, and I believe that, without obscuring the history of this term in the field of economics,
it carries a strong and close meaning in this second literature and facilitates navigation between these two
disciplinary fields.
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shared at least to some extent by one-third of the voters. Making experiments fairer through

adaptive experiments could lead us to both more and better policies. They provide an answer

to a major criticism of randomized controlled trials (RCTs), namely a lack of ethics towards

experimental subjects due to the sending of suboptimal treatments to a large number of

individuals with the sole aim of establishing clear inferences on treatment effects.

Nevertheless, a dilemma must be solved: the problem of multi-armed bandits has long

been discussed in the literature. Multi-armed bandits problem consist in discovering progres-

sively the most successful treatment arms. When individual characteristics are also used to

target the treatments, designs are referred to as “contextual multi-armed bandits.” As early

as 1933, Thompson proposed an algorithm for solving the reward maximization problem in a

multi-arm adaptive experimentation setting, called Thompson sampling. These designs have

not yet become the gold standard in economics or medicine compared to standard RCTs,

which were originally introduced by Neyman in 1923 and Fisher in 1925 (Banerjee et al.

2016). Furthermore, the treatment allocation rule in randomized controlled trials (RCTs) is

often considered an ethical argument in itself due to its simplicity and transparency. This

is because it provides everyone with an equal chance to receive the treatment. The promise

of convergence toward an individual optimal treatment could be a strong ethical argument

since the situation of each individual could be improved.

Thus, as a first step, I will identify fairness values that can be put forward in the context

of policy or treatment evaluation based on the experimental literature and the economic

theory of justice. Some experimental designs neglect certain values, and expliciting these in

a single model will therefore allow us to fuel the discussion.

2.2 General Framework

Firstly, let us propose a very simple framework. The subjects of the experiment correspond

to a population of individuals numbered by an index i taking integer values between 1 and

N . To simplify the discussion, I consider a problem with only two treatment arms, for

example, a control group (0) and a treatment group (1). Hereafter, I will refer to group (0)

as the “untreated” group, and group (1) as the “treated” group, but the reasoning applies

to the case where group 0 receives a specific treatment denoted A and group 1 receives a

specific treatment denoted B. The researcher’s job is to decide p1, ...pn, the probabilities

of allocating treatment 1 to each individual, while maximizing a fairness program over the

individuals. The researcher’s utility will thus depend on the value given to different justice

criteria that I propose to develop in the following subsections. Following the framework of

potential outcomes (Rubin 1974), I consider that by being treated, an individual receives an

outcome Y (1), and by not being treated receives Y (0). The variable indicating the fact that

the individual is treated denoted T , takes the value 0 (control) or 1 (treated). The treatment

can positively or negatively affect the individual’s outcome. Furthermore, the individual will
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be described by two binary characteristics:

• Variable G is 1 if the individual belongs to a protected group and 0 otherwise. G can

represent a group according to which it is not considered acceptable to discriminate,

such as gender, race, disability status, sexuality, religion, etc.

• Variable X which is another binary characteristic according to which it is acceptable

to discriminate.

X and G are potentially correlated, and (X,G) can determine Y (1) and Y (0).

2.3 Fairness considerations in experimental setups

I identify here 5 main types of fairness values that could be put forward in assessing the

ethics of one experimental design versus another: (1) improvement of everyone’s situation,

and in particular of the worse-off, (2) simplicity and transparency of the treatment alloca-

tion rule, (3) equality of opportunity, i.e. permitting differentiation of treatment allocation

chances solely based on specific, clearly defined variables that are deemed acceptable for

differentiation, and (4) protection of individual data, that is the minimization of personal

data collection.

This paper has interesting similarities with Viviano and Bradic (2022)’s work on fair

policy targeting. However, the fact that the problem examined here concerns treatment

allocation in an experimental context and not a reflection on welfare programs from the

policymaker’s point of view makes an important difference. In Viviano and Bradic (2022)’s

paper, several definitions of fairness are also proposed in the context of policy targeting,

some of which echo the dimensions discussed here. The agent can indeed choose a definition

of unfairness (1) based on observed differences in policy allocation, (2) based on welfare

disparities, (3) based on an individual’s incentive to reveal a sensitive attribute and (4) based

on notions of counterfactual fairness. The approach of this paper is, in my understanding,

very interesting in a perspective where we would like to guide a policymaker who would like

to target policy on a population and would have preferences for a type of fairness. In this

paper, I focus more on experimental considerations, resulting in slightly different choices

of fairness dimensions. The definition based on observed differences in allocation can be

linked to our first criterion of transparency of the allocation rule. Indeed, by choosing a

probability π of allocating the treatment before running the experiment in a standard RCT,

the experimentalist ensures that the unfairness criterion based on observed differences in

allocation is null. The ethical role of my criterion is simply stronger in this paper: it is

not just a question of ensuring equal treatment between individuals, but also of ensuring

transparency of the rule by specifying the probability upstream, to be able to announce it to

the experimental subjects and allow informed consent. Moreover, in an experimental context,

the decision to collect sensitive data is taken by the experimentalist, and formulation in the
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form of an incentive may not be appropriate in this context, which is why I opt for modeling

in terms of costs. I consider that during the experimental phase, the experimentalist struggles

to define measurable welfare, but I take into account the possibility that a short- or medium-

term outcome may be observable and desirable. Rather than considering inequalities in

long-term welfare, I consider inequalities in access to short-term treatment, in the absence

of knowledge of the effects on long-term outcomes.

It should be noted that in practice, other criteria of comparison concerning ethics in a

less direct way could also be examined, such as the cost of setting up the experiment, the

value attributed to the scientific result for the community as a whole, and the externalities

resulting from the dissemination of knowledge derived from the experiment. These mech-

anisms may vary from one experimentation to another, and depend on the organization of

the research and the usefulness of the individuals not participating in the experimentation.

Their integration could be left to future work.

2.4 Criterion 1: maximizing a short-term outcome improving welfare

In 1979, the Belmont Report was finalized, laying down 3 principles designed to protect

the rights of research subjects: (1) respect for persons, (2) beneficence, and (3) justice.

These principles have served as a significant inspiration for promoting ethical conduct in

experimental research, especially for clinical trials. To be consistent with the second principle,

that of beneficence, we can consider that there are two rules to follow: (1) do no harm and

(2) increase potential benefits and decrease possible adverse events or harms (Miracle 2016).

This second rule in particular could be an argument in favor of adaptive experiments, and

even more so of contextual adaptive experiments, that personalized the allocation based on

the observed characteristics. The proposed algorithms explicitly seek a solution to maximize

benefits.

When the outcome Y (1) or Y (0) is an outcome that increases the individual’s satisfaction,

a reasonable goal is to maximize the outcome Y obs = Y (1)T + Y (0)(1− T ). In other words,

it may be desirable to send the individual to the treatment that maximizes the impact on a

variable universally considered desirable.

2.4.1 The virtues of the contextual bandit goal from a utilitarian perspective

Let us consider a restrictive but relevant case where the objective of the contextual bandit

is aligned with a social welfare function. In a contextual bandit, it is possible to allocate the

optimal treatments according to the characteristics, thus personalizing the allocation of the

treatment arms. The objective is thus a personalized allocation:

max
t∈{0,1}N

N∑
i=1

Yi(ti)1 (Ti = ti) (1)
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Let us consider some simple but strong conditions justifying the social desirability of

the solution targeted by contextual bandits. Suppose a researcher has a preference relation

R to rank the different treatment allocation options. Let us denote A the set of possible

allocations of the treatment to N individuals. A contains 2N elements, corresponding to

the outcomes of N random draws among {0, 1}. Let us note U1(·), ...UN (·) the individual

utilities associated with an allocation a. Let Ai ⊂ A be the set of allocations such that i

receives the treatment, and Āi ⊂ A the set of allocations such that i does not receive the

treatment. Let us assume that individual utility is purely selfish, i.e. that an experimental

subject is only concerned with his own allocation2:

Assumption 1: individualism

∀i ∈ J1, NK,

∀ (a0, a1) ⊂ A2
i , Ui (a0) = Ui (a1)

∀ (a0, a1) ⊂ Ā2
i , Ui (a0) = Ui (a1)

Let us defineWi as the unit vector where every component is 0 except the ith element that

is a 1. In other words, we have Ai = {a ∈ A | ⟨Wi, a⟩ = 1} and Āi = {a ∈ A | ⟨Wi, a⟩ = 0}.
We can state a second assumption that will systematically make the solution of the contextual

bandit desirable:

Assumption 2: unconditional desirability of Y

∀i ∈ J1, NK, Yi (⟨Wi, a0⟩) ≥ Yi (⟨Wi, a1⟩)⇔ Ui (a0) ≥ Ui (a1)

According to this assumption, an individual always prefers that the treatment increases

their outcome3.

Under these assumptions, it then becomes clear that the contextual bandit’s goal becomes

consistent with the utilitarian criterion:

∀(a0, a1) ⊂ A2, a0 R a1 ⇔
N∑
i=1

Ui(a0) ≥
N∑
i=1

Ui(a1)

In this restrictive case, letting an algorithm converge toward the solution of its objective

seems desirable. The targeted solution will guarantee an improvement in everyone’s situation.

The strong Pareto principle will be guaranteed, as will the principle of Rawls’ difference, since

by aiming at the improvement of the situation of each person it allows the improvement of the

situation of the most disadvantaged. They would not be guaranteed in a standard RCT. This

criterion is also compatible with the principle of anonymity, implying the principle of non-

2This assumption implies that there are no peer effects.
3In the case where Y (·) is unconditionally non-desirable, like the number of days staying sick, one can

state that −Y (·) will be unconditionally desirable.
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dictatorship since the utilities in the above sums can easily be inverted without changing the

value of the sum. It would then be detrimental not to algorithmically search for the optimal

solution during experimentation. A particular case where these assumptions are credible is

perhaps that of health. If the experimental subjects are indifferent to each other, and if

everyone wants to improve their own health, then these strong assumptions hold.

2.4.2 The problem with non-contextual bandits

This restrictive case also helps us to understand why customization is very attractive, beyond

the general increase of impact. Let us suppose that, instead of looking for a personalized

solution through a contextual bandit, we look for an optimal solution on average without

taking the context into account. The set of alternative allocations A is then restricted to

two options: (0, ...0), i.e. allocate the treatment to nobody, and (1, ...1), i.e. allocate the

treatment to everybody. The objective of the algorithm is then :

max
t∈{0,1}

N∑
i=1

Yi(t)1 (Ti = t) (2)

In this case, the objective is no longer aligned with the social preferences described above.

In particular, there is a risk of violating the principle of non-dictatorship. Indeed, if a sub-

group sees its situation deteriorate while the majority of experimental subjects have a strong

positive treatment effect, the algorithm may choose to attribute the treatment to all. In this

case, exploiting a large amount of individual information to personalize the targetting of the

treatment appears more desirable.

2.4.3 The overall impact translated as a fairness criterion

In the model, I propose a fairness criterion closely related to the program (1), except that I

will reason in terms of expected utility:

max
p∈[0,1]N

N∑
i=1

(
pi · Yi(1) + (1− pi) · Yi(0)

)
(3)

Reasoning in terms of expected utility will be helpful to highlight intermediate solutions

where we would prefer to give the individually optimal allocation while limiting the differences

between the weights for different categories of individuals.

Although there are clear arguments in favor of using an algorithm that maximizes a

certain outcome variable from the point of view of fairness towards the subjects of the

experiment, the assumptions set out above remain debatable. Firstly, one can assume that

there are cases where individuals may be reluctant to see Y positively affected by their

neighbors if inequalities increase between individuals. This could be the case if a public

policy had a stronger effect on the income or resources of the better-off, and increased
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inequalities between test subjects. For example, a policy that increases the test scores of

every student but that increases the gap between students from less and more privileged

backgrounds could be viewed as non-desirable. Moreover, the desirability of outcome Y must

be studied on a case-by-case basis. For example, if Y represents a return to employment

or its proxy, this may only be desirable on condition that the new job is stable. Finally, in

practice, personalizing the treatment during the experiment presupposes that the algorithm

can discover the best treatments for each sub-group of the population. A sub-group that is

poorly represented in the dataset could suffer from poorer algorithm performance, and the

principle of non-dictatorship would then be neglected. This is why it is also necessary to

study the arguments against personalization.

2.5 Criterion 2: simplicity and transparency of the treatment allocation

rule

The uniform allocation rule is giving each individual the same probability of receiving one

treatment arm over another. I will refer to it as the “simple and transparent allocation

rule.” This treatment allocation rule is probably the most cognitively accessible rule for the

researcher and the experimental subject. It amounts to saying that each individual has a

probability of say π ∈ [0, 1] receiving the treatment. It is also transparent in the sense

that it is known in advance of the experiment, and does not depend on an algorithm, or

the impact of the treatment. If an individual asks specifically what is his or her chances

of being treated, the uniform rule is natural. In the case of a two-treatment problem, it

corresponds to the parameter of a Bernoulli distribution and can be illustrated by the problem

of flipping a coin that is possibly unbalanced. In addition to its simplicity, it ensures that

the experimental subject understands the conditions of the experiment. The rule of uniform

allocation of the treatment also respects a principle of parity, since, whatever the subgroup

to which the individual belongs, the chances of being treated are uniformly distributed,

regardless of their subgroup. In the field of responsible AI, statistical parity consists of

an equitable distribution of AI outcomes between groups. An experimental design involves

selecting treatment allocation probabilities for each individual. In the case of a standard

Randomized Controlled Trial (RCT), the allocation probabilities are predetermined by the

experimentalist, will be equal to π ∈ [0, 1], and are ensured to be respected by design.

Thus, in the model, this preference for this simple rule is reflected in an absolute distaste

for any deviation of the treatment allocation probabilities from π. In other words, this

fairness criterion is met if and only if:

N∏
i=1

1
(
p (xi, gi) = π

)
= 1
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2.6 Criterion 3: equal opportunity to receive the treatment

If X is the only variable determining the probability of treatment allocation, then :

∀(X,G), p(X,G) = E[T | X,G] = E[T | X]

A simple inequality observed between the allocation probabilities of the G = 1 and G = 0

groups is therefore not sufficient. One way of modeling distaste for inequality of opportunity

could be to penalize the part of this difference not explained by X. In other words, one

interpretation might be to decompose this difference using the Kitagawa-Oaxaca-Blinder

method (Kitagawa 1955, Oaxaca 1973, Blinder 1973). This decomposition method is widely

used in the inequality literature to explain the gender wage gap or inequalities between two

countries for example. When the average allocation weights in the G = 0 and G = 1 groups

are different, denoting p(X, g) the random variable E[T | X,G = g], we observe :

E[p(X,G) | G = 1]− E[p(X, g) | G = 0] ̸= 0

The question then arises as to whether this observed difference stems solely from differen-

tiation according to X or from discrimination according to G for equal X characteristics.

The average difference in observed probabilities can be broken down into a part explained

by differences in X and an unexplained part. Let us denote p(X, r) the reference probability

chosen for this decomposition (see Flachaire and Picard 2023). The difference in probabilities

can be decomposed as follows:

E[p(X,G) | G = 1]− E[p(X,G) | G = 0]︸ ︷︷ ︸
Observed difference in probabilities of being treated

=E[p(X,G) | G = 1]− E[p(X, r) | G = 1]︸ ︷︷ ︸
Unexplained advantadge for group 1

− E[p(X,G) | G = 0]− E[p(X, r) | G = 0]︸ ︷︷ ︸
Unexplained disadvantage for group 0

+ E[p(X, r) | G = 1]− E[p(X, r) | G = 0]︸ ︷︷ ︸
Part due to differences in characteristic X

The objective is to minimize the unexplained parts of the observed difference. As a

reference here, I propose to refer to the Neumark’s reference group (Neumark 1988). The

part to be minimized to take account of this fairness criterion based on a decomposition in

means is therefore:

N∑
i=1

Å
(p (xi, gi)− E [T | X = xi])

Å
gi

# {i | gi = 1}
− (1− gi)

# {i | gi = 0)

ãã2

where the negative and positive deviations are treated equivalently due to the square

applied to any of them. Note that in practice, the choice of reference group is important for

estimating this unexplained part. Alternatives to this choice may be considered as discussed
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in Flachaire and Picard (2023).

It should be noted that one objective could also have been to minimize inequalities

about an outcome affected by the intervention, which we would like to see fairly distributed

among agents. However, I think that decomposing an outcome rather than the probability

of receiving the treatment has its drawbacks. First of all, we need to ensure that there is a

genuine preference for a fair distribution of this outcome. On the other hand, interventions

may aim to have an impact on several outcomes, which may involve knowing how to combine

these outcomes and which inequality to reduce. Finally, impacts on outcomes are generally

unknown, and medium-term outcomes may be difficult to estimate during the experiment.

This is why I prefer to decompose inequality of access to treatment.

2.7 Criterion 4: data minimization (Data Protection)

Using personal data to target an intervention may be costly in terms of fairness, even if it

seems acceptable to use the characteristics to train the decision algorithm. Data regulations

such as the European GDPR advocate minimizing the collection of data according to the

purpose of the data processing. The principle of minimization states that personal data

should be adequate, relevant, and limited to what is necessary in relation to the purposes

for which they are processed. Indeed, the collection of multiple personal data favors the

identification of individuals in the database and thus exposes the individual to the risk of

privacy violation, even when observations are pseudonymized with an identifier or number.

This cost can be seen as internalized by the researcher as a moral cost or a monetary cost

considering the exposition of legal sanctions. It is considered here as fully exogenous and

independent of the context. I will introduce this concern as a cost borne for data collection.

This means that, to unlock the possibilities of personalization of the allocation, the agent in

the model will pay a cost cx to obtain the right to use X and cg to obtain the right to use

G as determinants of the probabilities for each individual4.

2.8 Necessary condition: learning and inference

In many cases, the primary objective of the experimentalist is to infer the average treatment

effect (ATE) or the conditional average treatment effects (CATE), even before considering the

fairness of the experiment. Making reliable inferences, even on sub-groups of the population,

is not a fairness objective in itself, even if in some cases, ignoring the effects of treatment

on sub-populations can be perceived as an ethical issue. For example, in the medical field, a

lack of knowledge of treatment effects for pregnant women can be seen as a research ethics

issue. In most cases, however, I consider the possibility of making inferences to be more of

a “selfish” concern for the researcher, hence my reluctance to list this directly as a fairness

4The observation of Y can be considered as costly too from this point of view, but since the outcome will
in any practical case be observed for experimental purposes, I do not incorporate it in my model.
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objective. However, it is a crucial issue in experimentation and the very motivation for

setting up an experiment.

Moreover, this dimension is important for this discussion as it may lead to a preference

for one design over the other. Standard RCTs are a gold standard because they enable simple

and reliable inference, at least for the population included in the experiment. Inference in

adaptive experiments is more complicated in practice. I will assume here that the framework

for inference is frequentist. Indeed, although the Bayesian approach may seem natural in

this context of progressive data collection, and in particular when allocation strategies are

based on a Bayesian model as is the case for Thompson sampling, it is not the most com-

mon approach in the field of public policy and medical treatment evaluation. Furthermore,

purely Bayesian frameworks may be more difficult to adapt to contexts of intensive explo-

ration of fine heterogeneity, for example with machine learning techniques in the context of

high-dimensional heterogeneity5, which undermines the hope of personalizing treatment and

avoiding problems of group dictatorship (see discussion in section 2.4.2).

Adaptive experiments have a feature that brings them closer to standard RCTs: the

allocation weights remain random for each individual. What’s more, as these allocation

weights are purely decided by the algorithm, they are traceable and known, so there’s no

need to re-estimate them, and we know the variables that determine them6. Thus, it is no

less possible to conduct unbiased inference in this context7 by reweighting. In this way, the

mean treatment effect and conditional effects can be estimated using the Inverse Probability

Weighting (IPW) estimator:

CATE(x, g) = E
[
Y (1)− Y (0) | X = x,G = g

]
= E

[
Y obs1{T = 1}

p(x, g)
− Y obs 1{T = 0}

(1− p(x, g))
| X = x,G = g

]

These conditional mean effects can be calculated from the empirical counterpart :

◊�CATE(x, g) =
1

nx,g

nx,g∑
i=1

[
Y obs
i

1{Ti = 1}
p(x, g)

− Y obs
i

1{Ti = 0}
(1− p(x, g))

]

Where
∑nx,g

i is a sum over all individuals satisfying X = x and G = g. This estimator

is unbiased and easy to compute since the draw probabilities are perfectly known by de-

5One could, however, discuss this statement by mentioning work carried out in a Bayesian framework and
including a regularization parameter, and mention for example Chapelle and Li (2011).

6In short, the fact that drawing weights vary from one individual to another is no more a problem for
constructing unbiased estimators than it is in the context of stratified experiments.

7We refer the reader, however, to Zhan et al. (2021) for a discussion of the need to correct estimates to
ensure asymptotic normality in a context where time dependence prevents observations from being considered
independent and identically distributed.
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sign, even in an adaptive experiment. Its known drawback, however, is its sensitivity when

the denominator probabilities take values very close to 0 and 1. Now, in the context of

an adaptive experiment, a major risk is that of eventually converging toward extreme draw

probabilities. The quality of the inference may then depend on whether we manage to main-

tain draw probabilities bounded away from 0 and 1. In the literature on treatment effects,

a common practice is to trim observations with draw probabilities that are too extreme, i.e.

to remove them from the estimation. Trimming thresholds often used are, for example, 0.01

and 0.99, or even 0.05 and 0.95. Trimming can be seen as a choice to favor the internal

validity of estimates over external validity (see Imbens and Rubin 2015, chapter 16), i.e. to

obtain results that are less generalizable over the whole population, but more reliable for

the trimmed sample. That said, in a controlled environment, an experimentalist can avoid

making this sacrifice by not assigning extreme draw probabilities by design. I consider that

the choices of treatment allocation weights are made under the constraint:

∀(x, g) ∈ {0, 1}2, α ≤ p(x, g) ≤ 1− α

where α ∈ [0, 0.5] is a parameter that has to be chosen by the experimentalist and that

would correspond to her preferred trimming threshold. This constraint is designed to avoid

the need for trimming and to promote the validity of the inference over the whole sample.

3 Theoretical model

3.1 General utility model

Based on the fairness considerations above, I built the following program for a researcher who

would like to base the assignment probabilities of the treatment on the different individuals:

max
(p(xi,gi))

N
i=1

ω1

N∏
i=1

1 (p (xi, gi) = π)

−ω2

N∑
i=1

Å
(p (xi, gi)− E [T | X = xi])

Å
gi

# {i | gi = 1} − (1− gi)

# {i | gi = 0)

ãã2

+ω3

[
N∑
i=1

(p (xi, gi)E [Yi(1) | X = xi, G = gi] + (1− p (xi, gi))E [Yi(0) | X = xi, G = gi] −cx − cg)

]
such that ∀i ∈ J1, NK, α ≤ p(xi, gi) ≤ 1− α

In this model, ω1 is greater than 0 when there is a concern for a simple assignment rule.

This goal is not incompatible with a welfare maximization program, because there can be

cases where the optimal assignment rule in terms of cumulative individual gains is a uniform

rule (for example, giving everyone the treatment). When there is a dislike for discrimination

against the sensitive variable G, then ω2 should be strictly greater than 0. Note that I

consider that the dislike goes here in both directions, meaning in particular that there is both
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a dislike for positive discrimination as well as discrimination against the privileged group.

When one goal is to maximize the gains by personalizing the treatment allocation, then ω3

is greater than 0. This personalization may have a positive cost cx or cg given the fourth

consideration of data minimization. The optimization problem above may be expressed

also referring to the conditional treatment effects τ(xi, gi) = E [Yi(1) | X = xi, G = gi] −
E [Yi(0) | X = xi, G = gi] and a constant ci = E [Yi(0) | X = xi, G = gi]− cx − cg as follows:

max
(p(xi,gi))

N
i=1

ω1

N∏
i=1

1 (p (xi, gi) = π)

−ω2

N∑
i=1

Å
(p (xi, gi)− E [T | X = xi])

Å
gi

# {i | gi = 1}
− (1− gi)

# {i | gi = 0)

ãã2

+ω3

[
N∑
i=1

(p (xi, gi) τ(xi, gi) + ci) .

]
such that ∀i ∈ J1, NK, α ≤ p(xi, gi) ≤ 1− α

This reformulation allows us to see what is really important in the problem: the treatment

effects themselves, rather than the potential outcomes.

3.2 Insights from a simplified framework

3.2.1 Simplified Model Version

In concrete applications, optimal probabilities are the same for a given set of characteristics

(x, g), meaning that for all i ∈ J1, NK, (k, l) ∈ {0, 1}2, I let pkl := p (xi = k, gi = l)8. The

search for optimal weights simplifies to the search for 4 probabilities. Let us similarly denote

τkl = τ(k, l).

For simplicity, I will assume here that the population contains exactly one-quarter of

individuals of each type, i.e. a uniform distribution within the population of the charac-

teristics (G,X) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, we can simplify the above model for illustra-

tion purposes. Indeed, each individual being described by xi and gi, and each type being

equiprobable, we have:

8In some cases actual weights can be slightly different from one observation to another for exploration
purpose but they are drawn from a distribution centered on the same value.
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E [T | X = xi] = E [T | X = xi, G = 1]P (G = 1 | X = xi)

+ E [T | X = xi, G = 0]P (G = 0 | X = xi)

= p (xi, 1)×
1

2
+ p (xi, 0)×

1

2

=
p (xi, 1) + p (xi, 0)

2

=
pxi1 + pxi0

2

Moreover, solving the general program amounts in this case to solving a simplified pro-

gram for each of the 4 types of individuals, each having a potential outcome when treated

(T = 1) and not treated (T = 0). Finally, the overall goal simplifies to:

max
(p00, p01, p10, p11)∈[0,1]4

ω11 {p00 = π}1 {p01 = π}1 {p10 = π}1 {p11 = π}

−ω2

8

Ä
(p00 − p01)

2 + (p10 − p11)
2
ä

+ ω3

∑
(k,l)∈{0,1}2

(pklτkl + ckl))

such that ∀(x, g) ∈ {0, 1}2, α ≤ p(x, g) ≤ 1− α

where ∀(k, l) ∈ [0, 1]2, ckl = E [Y (0) | X = k,G = l] − cx − cg . Thus, we can see that

optimal solutions will only depend on π, ω1, ω2, ω3, τ00, τ01, τ10 and τ11. Knowledge of

preferences for the three dimensions of fairness, as well as knowledge of treatment effects, is

therefore sufficient to determine optimal allocations.

3.2.2 Solving the program

Starting by discarding solutions of the type p⋆ = (π, π, π, π) (to reintroduce them in the end),

the objective function takes the form of a sum of two sub-functions that can be optimized

separately: a function of (p00, p01) and a second function of (p10, p11). In other words,

probability choices are made in pairs sharing the same x, and we can anticipate the (p00, p01)

allocations without the need for any further information. The two optimization problems

being quite similar, let us focus on the function of (p00, p01) to understand the optimal

allocations:

f(p00, p01) = −
ω2

8
(p00 − p01)

2 + ω3 (p00τ00 + p01τ01)

LetD =
{
(p00, p01) ∈ R2 | p00 − α ⩾ 0, 1− α− p00 ⩾ 0, p01 − α ⩾ 0, 1− α− p01 ⩾ 0

}
. Func-

tion f being defined on the compact D, it reaches a maximum. The maximum can be reached

for either values in ]α, 1 − α[×]α, 1 − α[ or on the borders. When reaching a maximum for

values at the interior, the candidates verified that the gradient is zero. Otherwise, values at

the border should be considered.
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Interestingly, there are few cases with interior solutions. Interior solutions arise in two

cases: first, when neglecting the last dimension of fairness, that is, assuming ω3 = 0. In this

case, the agent only cares for equality of opportunity concerns and can decide any (p⋆00, p
⋆
01)

in the square [α, 1− α]× [α, 1− α] such that p⋆00 = p⋆01. In a less radical framework though,

interior solutions arise whenever τ00 = τ01 are perfectly symmetrical9, provided that the

treatment effects are not too extreme (| 4 ·ω3 · τ00/ω2 |≤ 1− 2α). In these cases, the optimal

allocation verify | p⋆00 − p⋆01 |=| 4 · ω3 · τ00/ω2 |, the lowest probability being of course p⋆00 if

τ00 ≤ 0 and p⋆01 otherwise.

In every other cases, solutions have to be found on the border. Depending on the relation-

ship between each treatment effect and the initial preferences ω2 and ω3, one can compute

the points yielding the highest value of f(·, ·) on each border. The 4 points can be obtained

using table 1 (see proof in appendix):

τ00 ≤ ω2
4ω3

(2α − 1)
ω2
4ω3

(2α − 1) < τ00 ≤ 0 0 < τ00 ≤ ω2
4ω3

(1 − 2α)
ω2
4ω3

(1 − 2α) < τ00

(α, α) (α, α) (α, α) (α, α)

τ01 ≤ ω2
4ω3

(2α − 1) (1 − α, α) (1 − α, α) (1 − α, α) (1 − α, α)

(α, α) (α, α)
(
4ω3
ω2

τ00 − α, α
)

(1 − α, α)

(α, 1 − α)
(
1 − α +

4ω3
ω2

τ00, 1 − α
)

(1 − α, 1 − α) (1 − α, 1 − α)

(α, α) (α, α) (α, α) (α, α)
ω2
4ω3

(2α − 1) < τ01 ≤ 0
(
1 − α, 1 − α +

4ω3
ω2

τ01

) (
1 − α, 1 − α +

4ω3
ω2

τ01

) (
1 − α, 1 − α +

4ω3
ω2

τ01

) (
1 − α, 1 − α +

4ω3
ω2

τ01

)
(α, α) (α, α)

(
4ω3
ω2

τ00 − α, α
)

(1 − α, α)

(α, 1 − α)
(
1 − α +

4ω3
ω2

τ00, 1 − α
)

(1 − α, 1 − α) (1 − α, 1 − α)(
α,

4ω3
ω2

τ01 − α
) (

α,
4ω3
ω2

τ01 − α
) (

α,
4ω3
ω2

τ01 − α
) (

α,
4ω3
ω2

τ01 − α
)

0 < τ01 ≤ ω2
4ω3

(1 − 2α)
(
1 − α, 1 − α +

4ω3
ω2

τ01

) (
1 − α, 1 − α +

4ω3
ω2

τ01

) (
1 − α, 1 − α +

4ω3
ω2

τ01

) (
1 − α, 1 − α +

4ω3
ω2

τ01

)
(α, α) (α, α)

(
4ω3
ω2

τ00 − α, α
)

(1 − α, α)

(α, 1 − α)
(
1 − α +

4ω3
ω2

τ00, 1 − α
)

(1 − α, 1 − α) (1 − α, 1 − α)

(α, 1 − α) (α, 1 − α) (α, 1 − α) (α, 1 − α)
ω2
4ω3

(1 − 2α) < τ01 ≤ 0 (1 − α, 1 − α) (1 − α, 1 − α) (1 − α, 1 − α) (1 − α, 1 − α)

(α, α) (α, α)
(
4ω3
ω2

τ00 − α, α
)

(1 − α, α)

(α, 1 − α)
(
1 − α +

4ω3
ω2

τ00, 1 − α
)

(1 − α, 1 − α) (1 − α, 1 − α)

Table 1: List of the 4 candidates at the boundaries to get the optimum

I will refer to the cells as B(τ00, τ01), a set of 4 points. Whenever ∄(x, y) ∈ [α, 1 − α]2

such that ∇f(x, y) = 0, one of the points in B(τ00, τ01) will yield the optimum. In this case,

comparing the associated values of f(x, y) is sufficient to find the optimal solution.

Providing each outcome for any (x, g) while treated and not treated, in addition to the

preferences for the different dimensions of fairness ω1, ω2, ω3, one can find the optimal

allocations using algorithm (1) yielding the highest value for f(·, ·). The same procedure can

be repeated, changing the treatment effects in the algorithm, to optimize g(·, ·). The set of

solutions yields a certain utility U(p⋆) that should finally be compared with U((π, π, π, π))

to determine the best allocation analytically.

Thus, in many cases, there exist several optimal solutions that correspond to intermediate

values between [α, 1−α]. In some cases, there is an infinite number of solutions. The solutions

to the trade-off between the two dimensions are thus not obvious nor unique in general.

9Symmetry here arises partly from the uniform distribution of individual characteristics among the pop-
ulation in the simplified framework, although analogous relationship should arise in other contexts. The
difference is that with different distributions of the characteristics, the proportionality should be distorted.
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3.2.3 Interpreting traditional experimental allocation rules concerning the the-

oretical model

In certain extreme cases, the choice of experimental design would be imperative to align

with the agent’s fairness values. Indeed, if the researcher has preferences ω1 = 1, ω2 = 0,

and ω3 = 0, then setting up a standard randomized experiment defining π in advance would

maximize her fairness objective. If she has a strong preference for increasing impact, i.e.

ω1 = 0, ω2 = 0, ω3 = 1, the contextual bandit would be the experimental design to favor.

Finally, if she wishes to avoid discriminating according to G but wants to increase the total

impact, or if ω1 = 0, ω2 = 1 − ϵ, ω3 = ϵ with ϵ → 0, then she could opt for a contextual

bandit neglecting information on G. I propose to illustrate this idea on simulated data.

4 Simulation in the simplified framework

To illustrate the results above, let us assume some values for the potential outcomes in the

simplified framework. For this particular simulation, potential outcomes are specified in

figure 1, denoting ∀(x, g) ∈ {0, 1}2 by Y (1, x, g) the observed outcome when an individual of

type (x, g) is treated, and Y (0, x, g) when she is not. Thus, in figure 1, each cell represents

the potential outcomes of one type of individual, and the corresponding treatment effect can

be obtained by substracting in each cell the second potential outcome from the first. The

allocation rule that would be pre-determined for transparency is set to π = 0.5.10

4.1 Optimal solution for different preferences

4.1.1 Mixed preferences for the different dimensions of fairness and α = 0

First, let the preferences of the agent for the different dimensions of fairness be ω1 = 0.2,

ω2 = 0.7, ω3 = 0.1. Also assume in this case that α = 0, which means that the need to learn

from the experiment is neglected. Since I solved the optimization problem in a more general

case, I can already determine the optimal solution of the simplified optimization program

by computing the treatment effects in the table. Since τ00 = 1 and τ01 = −2, we know

that there will be no interior solution. The candidates thus can be found on the boundaries

B(−1, 2) using table 1. The set of 4 candidates will depend on the agent’s preferences for

the different dimensions of fairness ω1, ω2 and ω3. Then, we can proceed in the same way for

(τ10, τ11) - we can see that the solution will be unique since τ10 = −1 and τ11 = 5. Moreover,

in this setting, ω2
4ω3
∼ 1.75. Candidates at the boundary are those in the third column and

second row of table 1. Among those candidates,
Ä
4ω3
ω2

τ00, 0
ä
yields the highest value for f(·, ·).

Intuitively, the optimal solution is to give sometimes the treatment to the group (0, 0) that

has a positive effect, while keeping the distance between p00 and p01 moderate so that there

10Solutions for alternate versions of the model with mixed preferences can be computed using a Shiny app
available here: bertillep.shinyapps.io/optim/
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X = 0 X = 1

G = 0

G = 1

E[Y (0, 0, 0)] = 1

E[Y (1, 0, 0)] = 2

E[Y (0, 1, 0)] = 2

E[Y (1, 1, 0)] = 1

E[Y (0, 0, 1)] = 3

E[Y (1, 0, 1)] = 1

E[Y (0, 1, 1)] = 1

E[Y (1, 1, 1)] = 6

Figure 1: Data Generating Process: - definition of the potential outcomes

Notes: This figure represents the potential outcomes for the four types of individuals when they are treated
and when they are not treated. For example, an individual with characteristics x = 0 and g = 1 would receive
on average an outcome of 3 when not treated and 1 when treated. Distribution of the potential outcomes in
the sample is plotted in figure 2.

is no huge increase in inequality of opportunity. The distance between the two probabilities

is determined by the preferences for the second dimension versus the third dimension of

fairness. Similarly, I can deduce that the best choice for (p10, p11) is
Ä
4ω3
ω2

τ10, 1
ä
. Moreover:

U

ÅÅ
4ω3

ω2
τ00, 0,

4ω3

ω2
τ10, 1

ãã
> U((π, π, π, π))

which implies that points maximizing f(·, ·) and g(·, ·) ignoring the case p = (π, π, π, π)

will maximize the utility on [α, 1− α]4.

4.1.2 Exclusive preferences for transparency and π ∈ [α, 1− α]

Let α be a common trimming threshold (for example, α = 0.01 or α = 0.05). Let us assume

that ω1 = 1, ω2 = 0, and ω3 = 0. Moreover, π ∈ [α, 1 − α], meaning the treated and

control groups are not totally unbalanced, and the probability of being treated has been

chosen so that an important part of the sample is assigned to each group. In this setting, no

allocation rule will of course be better than (π, π, π, π) since the other dimensions of fairness

do not provide any supplementary satisfaction to the agent. The optimal allocation rule will

necessarily align with that of a standard RCT with a predetermined probability of allocation

π.
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4.1.3 Exclusive preferences for welfare maximization with α = 0

Let us assume that ω1 = 0, ω2 = 0, and ω3 = 1. Additionally, assume α = 0, meaning

that no precautions are taken against extreme sampling probabilities. In this case, the main

objective is to maximize the overall impact. The best allocation will be to allocate treatment

to individuals with characteristics (0, 0) and (1, 1) only. The objective will align with that

of a contextual bandit.

4.1.4 Exclusive preferences for welfare maximization with α = 0.05

Let us assume again that ω1 = 0, ω2 = 0, and ω3 = 1. However, let us take some precautions

against extreme sampling probabilities by assuming α = 0.05. In this case, the main objective

is to maximize the overall impact with a constraint: the sampling probabilities must not

be less than α or greater than 1 − α. The best allocation will be to allocate treatment

to individuals with characteristics (0, 0) and (1, 1) with probability 1 − α, and to allocate

treatment to the others with probability α. The objective will align with that of a tempered

contextual bandit.

4.1.5 Strong preferences for equal opportunity, with marginal interest for wel-

fare maximization

Let us assume that ω1 = 0, ω2 = 0.99, and ω3 = 0.01. This illustrates the case ω1 = 0,

ω2 = 1 − ϵ and ω3 = ϵ with ϵ → 0. This objective maintains that it is highly costly to

give different probabilities to individuals sharing the same characteristic x but with different

values for g. However, since the preference for welfare maximization is strictly positive, this

means that there is still a concern for welfare maximization. In the extreme case ϵ = 0, any

set of probabilities such that p00 = p01 and p10 = p11 would maximize the objective. Here,

there is a trade-off between keeping the pairs of probabilities very close to each other while

still maximizing the overall welfare.

4.2 Choosing an algorithm to converge to different solutions

4.2.1 Description of the 4 experimental designs

Let us illustrate how different algorithms can converge to these different goals in this setting.

I generated a sample of 2 000 observations. Each observation has a probability 1/4 to fall into

each category (x, g), which means that each combination is equally represented in the sample.

The potential outcomes are defined as in figure 1, adding a small noise from a centered

normal distribution with variance 0.5. The histograms of sampled values are displayed in

the appendix. The sample is divided into batches of size 100 so that the experiment lasts

for 20 periods. Four algorithms are compared:
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• A naive “algorithm” or (decision strategy) attributes to each individual at each batch a

probability of 0.5 of being treated. This corresponds to a standard RCT design where

π would have been set to 0.5.

• A Gaussian Thompson Sampling algorithm with conjugate priors (shortly described in

the appendix) uses all the information on the individuals to personalize the treatment.

It means that it is allowed to use as well x or g to personalize the treatment. In practice,

4 separate Thompson sampling algorithms are fitted for each of the 4 combinations of

characteristics.

• A variant of the previous Gaussian Thompson Sampling algorithm with conjugate

priors uses all the information on the individuals to personalize the treatment. The

difference is that in this algorithm, a correction is made whenever the sampling prob-

abilities are too extreme (less than α or larger than 1 − α). This algorithm could be

interpreted as a tempered version of the previous one and is inspired by the literature

on tempered Thompson Sampling (Caria et al. 2020).

• Another Gaussian Thompson Sampling algorithm with conjugate priors uses only the

information on x and is not allowed to discriminate using g. That means that for a

given x, the same decision should be taken for both g = 0 and g = 1. In practice, two

separate Thompson sampling algorithms are fitted for x = 0 and x = 1.

4.2.2 Simulations results

The respective behaviors of these three algorithms are illustrated in figures 3, 4, 5 and 6.

This section aims to interpret these simulations results.

An RCT reaches the optimal solution for exclusive preferences for transparency and

π ∈ [α, 1 − α]. Obviously, the probabilities set up in advance to 0.5 maximize the program

with ω1 = 1, ω2 = 0 and ω3 = 0 (figure 3). The solution is displayed on the graph as

a purple horizontal line corresponding to the value 0.5. This shows that an RCT may be

aligned with the solution of the fairness objective with an extreme parametrization, where

only transparency matters.

A Gaussian Thompson Sampling taking into account information on both variables

reaches the optimal solution for exclusive preferences for welfare maximization with α = 0

(figure 4). Using the second decision strategy, that is optimizing using all the information on

the individuals, the probabilities converge to the optimal probabilities when ω1 = 0, ω2 = 0

and ω3 = 1, that is, when there is an exclusive preference for welfare maximization. The

solution is displayed on this graph as a red line and takes values 0 or 1 depending on whether

being assigned to the treatment group yields the highest outcome or not.

A Tempered Gaussian Thompson Sampling taking into account information on both

variables reaches the optimal solution for exclusive preferences for welfare maximization
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with α = 0.1 (figure 4). The solutions are displayed as a green line on each graph.

Finally, using only information on x to optimize the allocation is a good way to get closer

to the optimal solution when ω1 = 0, ω2 = 1− ϵ and ω3 = ϵ with ϵ→ 0 (figure 6).

Thus, these four experimental designs align with very extreme interpretations of the fair-

ness objective. None of these designs can reach the fairness objective with mixed preferences

(ω1 = 0.2, ω2 = 0.7, ω3 = 0.1).

5 Conclusion

This paper presents a simple model that still addresses various fairness concerns in experi-

mental design by drawing from the economic literature on fairness. It emphasizes the crucial

role of treatment effects in determining optimal allocation strategies. For instance, when

there is even a slight consideration for maximizing welfare and all treatment effects are posi-

tive, treating all individuals becomes the optimal choice. The paper also highlights scenarios

in which treatment benefits some individuals while being detrimental to others. In such cases,

a multitude of optimal solutions may exist, underscoring the intricate trade-offs involved in

balancing different fairness dimensions.

Moreover, a simulation study demonstrates how basic experimental designs can converge

toward optimal solutions that embody radical interpretations of fairness. In other words,

preferences for RCT or adaptive experiments could arise from different radical interpretations

of fairness.

These findings raise important questions about the acceptability and fairness of experi-

mental designs. Firstly, it prompts a discussion on how to establish fairness preferences to

design experiments that are acceptable to both institutions and experimental subjects. Sec-

ondly, it calls for the exploration of alternative experimental designs that can accommodate

mixed preferences and yield interpretations aligned with the fairness objectives.
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A Proofs

Simplified model
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−ω2

Ç(
p00 −

p00 + p01
2

)2 Å
−1

2

ã2

+
(
p01 −

p00 + p01
2

)2 Å1
2

ã2

+
(
p10 −

p10 + p11
2

)2 Å
−1

2

ã2

+
(
p11 −

p10 + p11
2

)2 Å
−1

2

ã2
å

+ω3

∑
(k,1)∈{0,1}2

(pklτkl + ckl)

é
= ω11 {p00 = π}1 {p01 = π}1 {p10 = π}1 {p11 = π}

−ω2

4

Å
2×

(p00 − p01
2

)2
+ 2×

(p10 − p11
2

)2ã
+ ω3

∑
(k,1)∈{0,1}2

(pkℓτkl + ckl)

= ω11 {p00 = π}1 {p01 = π}1 {p10 = π}1 {p11 = π}

−ω2

8

Ä
(p00 − p01)

2 + (p10 − p11)
2
ä

+ ω3

∑
(k,l)∈{0,1}2

(pklτkl + ckl)

Optimal solutions in the simplified model for mixed preferences

Let us consider first every possible solutions p∗ ̸= (π, π, π, π), assuming ω2 ̸= 0 and ω3 ̸= 0,

for p ̸= (π, π, π, π):

U(p) =
−ω2

8

Ä
(p00 − p01)

2 + (p10 − p11)
2
ä

+ ω3

∑
(k,l)∈{0,1}2

(τklpkl + ckl)

Then the function can be decomposed into two separate functions to optimize and a constant:

U(p) = f (p00, p01) + g (p10, p11) + constant

Where:

f(x, y) = −ω2

8
(x− y)2 + ω3 (xτ00 + yτ01)

g(x, y) = −ω2

8
(x− y)2 + ω3 (xτ10 + yτ11)
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The two independent maximization problems are very similar. Let us focus on the max-

imization of f(x, y) for (x, y) ∈ [α, 1− α]2

Boundary solutions

Let us compute the points maximizing the function at the boundaries, fixing x = α, x = 1−α,
y = α, and finally y = 1− α.

• Case 1: x = α

f(α, y) = −ω2

8
(α− y)2 + ω3yτ01

∂

∂y
f(α, y) = −ω2

4
(α− y) + ω3τ01 ≥ 0

⇔ ω2

4
y − ω2

4
α ≤ ω3τ01

⇔ y ≤ α+
4ω3

ω2
τ01

case 1a: τ01 < 0⇒ ∀y, ∂
∂yf(α, y) ⩽ 0

⇒ y∗ = α

case 1b

{
α+ 4ω3

ω2
τ01 ≥ α⇔ τ01 ≤ 0

α+ 4ω3
ω2

τ01 ≤ 1− α⇔ τ01 ≤ ω2
4ω3

Then y∗ = α+ 4ω3
ω2

τ01

case 1c α+ 4ω3τ01
ω2

> 1− α ⇔ τ01 >
ω2
4ω3

(1− 2α)

Then y∗ = 1− α
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
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ä
if τ01 ∈

î
0, ω2

4ω3
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ó
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• Case 2, x = 1− α
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f(1− α, y) = −ω2

8
(1− α− y)2 + ω3 (τ00 + yτ01)

∂f

∂y
(1− α, y) =

ω2

4
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⇔ −y ≥ −4ω3

ω2
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⇔ y ≤ 4ω3
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case 2a τ01 > 0 then ∀y ∂
∂yf(1− α, y) ≥ 0

thus y∗ = 1− α

case 2b {
1− α+ 4ω3

ω2
τ01 ≥ α

1− α+ 4w3
ω2

τ01 ≤ 1− α
⇔

{
τ01 ≥ ω2

4ω3
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• Case 3: y = α

This case is symmetrical to case 1:
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ä
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• Case 4: y = 1− α

This case is symmetrical to case 2:
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B4 =
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Interior solutions

Given (x, y) ∈ [α, 1− α]2, ∇f(x, y) = 0 is equivalent to:{
−ω2

4 (x− y) + ω3τ00 = 0 (1)
ω2
4 (x− y) + ω3τ01 = 0 (2)

(1) + (2)⇒ ω3 (τ00 + τ01) = 0

• Thus, if ω3 ̸= 0, the above system is equivalent to

{
−ω2

4 (x− y) + ω3τ00 = 0 (1′)

τ00 = −τ01 (2′)

There is only one possible configuration if ω3 ̸= 0 for having interior solutions: the

treatment effects should be symmetrical.

Then, if τ00 ≥ 0
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ω2

τ00 + y

(1′) and (x ∈ [α, 1− α]) and (y ∈ (α, 1− α])

⇔ (1′) and
Ä
4ω3
ω2

τ00 ≤ 1− α− y
ä
and (y ∈ [α, 1− α])

⇔ (1′) and
Ä
y ≤ 1− α− 4ω3

ω2
τ00
ä
and (y ∈ [α, 1− α])

⇔ (1′) and
Ä
y ∈

î
α,min

Ä
1− α, 1− α− 4ω3

ω2
τ00
äóä

Provided that 4ω3
ω2

τ00 ≤ 1− 2α

S =

ß
x =

4ω3

ω2
τ00 + y, y ∈

ï
α, 1− α− 4ω3

ω2
τ00

ò™
If 4ω3
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τ00 > 1, there are no interior solution

If τ00 ≤ 0

(1) and (x ∈ [α, 1− α]) and (y ∈ [α, 1− α])

Then:
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τ00, 1− α

ò™
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• If ω3 = 0, S =
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(x, y) ∈ [α, 1− α]2, x = y

}
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Algorithm 1 Find Optimum for f(·, ·)
procedure FindOptimum(τ00, τ01, ω2, ω3)

if τ00 = −τ01 and (((4 ·ω3 · τ00/ω2 ≤ 1− 2α)∧ (τ00 ≥ 0))∨ (τ00 < 0∧−4 ·ω3 · τ00/ω2 ≤
1− 2α)) then

Print “There exist (x, y) ∈ [α, 1− α]2 such that the gradient is zero”
if ω3 = 0 then

Print “Any (x, y) ∈ [α, 1− α]2 such that x = y provides the maximum”
else

if τ00 ≥ 0 then
m← 4 · ω3 · τ00/ω2

Print “Any (x, y) such that x = m + y, y ∈]α, 1 − α − m[ provides the
maximum”

else
m← 4 · ω3 · τ00/ω2

Print “Any (x, y) such that x = m + y, y ∈]α − m, 1 − α[ provides the
maximum”

end if
end if

else
Print “No interior solution, checking the boundaries”
boundary points ← B(τ00, τ01, ω2, ω3, α)
max sub funct ← −∞
for each couple in boundary points do

sub funct value ← −ω2
8 (couple[0]− couple[1])2 + ω3(τ00x+ τ01y)

if sub funct value > max sub funct then
max sub funct ← sub funct value
best couple ← couple

end if
end for
Print “Point yielding the maximum is {best couple}”

end if
end procedure
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B Gaussian Thompson sampling with conjugate priors

Assuming ωk = (mk, vk, αk, βk) with αk > 0 and βk > 0
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i=1,ti=k 1 (ti = k) , y(k) = (yi(k))i∈[1,t−1]
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From this, I get11:
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11See https://gertjanvandenburg.com/blog/thompson sampling/ for detailed calculations
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Algorithm 2 Gaussian Thompson Sampling with Conjugate Priors

Input: α, β, ν, m - all arrays of size equal to the number of arms
Output: Choosen arm and update the parameters
procedure choose arm

mu← []
for i in range(num arms) do

Draw sigma square from inverse gamma distribution
zeta square[i]← sigma square

Nt[i]+ν[i]

Append zeta square[i] to history zeta square[i]
mu a ← draw from normal distribution with mean rot[i] and standard deviation√

zeta square[i]
Append mu a to mu
Append rot[i] to history rot[i]

end for12

a← index of maximum element in mu
Append a to all chosen arm
return a

end procedure
procedure update parameters(a, xt)

old xbar t← xbar t[a]
Append xt to all xt[a]
xbar t[a]← old xbar t+ 1

Nt[a]+1 · (xt− old xbar t)

st[a]← st[a] + xt2 +Nt[a] · old xbar t2 − (Nt[a] + 1) · xbar t[a]2

Nt[a]← Nt[a] + 1

rot[a]← ν[a]·m[a]+Nt[a]·xbar t[a]
ν[a]+Nt[a]

beta[a]← init beta[a] + st[a]
2 + Nt[a]·ν[a]·(xbar t[a]−m[a])2

2·(Nt[a]+ν[a])

alpha[a]← init alpha[a] + Nt[a]
2

Append Nt[a] to all Nt[a]
end procedure

11 In the tempered version of the algorithm, one step is added. If rot and zeta square were such that one

of the treatment arms would yield the highest mua with a probability larger than 1−α, then rewards mu

are drawn again. This is done using the fact that all the mua are drawn from two independent normal

distributions. Thus, the probability that one is yielding the highest mu is easy to compute using the

parameters of the two distributions. To ensure that the probability of drawing this arm remains equal

to 1 − α, I draw mu from two normal distributions such that one is yielding the highest mu with exact

probability 1− α.
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C Figures

Figure 2: Sampling values for the potential outcomes
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Figure 3: Probabilities in a standard RCT

Figure 4: Probabilities using information on x and g
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Figure 5: Probabilities using information on x and g

Figure 6: Probabilities using only information on x
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