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Abstract

In many situations, people make decisions based on the actions of others, but have incomplete
information about the social structure they form. This paper presents a novel approach to the
analysis of network games based on group theory. I propose a model of Bayesian updating
in which players have incomplete information about the network they are part of, and form
beliefs about it based on a set of signals before playing the game. I characterize posteriors for
a variety of information setups, and provide conditions under which equilibrium actions depend
monotonically on certain aspects of players’ network position (e.g., on their number of friends).
The conditions relate network information to the distribution of players in the set of feasible
networks, and allow the design of information structures compatible with monotone equilibria.
Moreover, they show that, regardless of the structure of the network that players are part of,
equilibrium outcomes tend to be more influenced by the topology of networks that are more
asymmetric, among all those compatible with their information.
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1 Introduction

People’s behavior often depends on that of their peers. When making a decision such as getting

vaccinated (Brunson, 2013), voting (Harmon et al., 2019), adopting a technology (Ferrali et al.,

2020), or doing someone else a favor (Jackson et al., 2012), individuals are often influenced by the

decisions of their contacts. There is a huge literature on this phenomenon, which has motivated the

development of models in which the influence that people exert on each other is represented as an
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interaction matrix or network (see, for example, Ballester et al., 2006; Jackson and Yariv, 2007;

Bramoullé and Kranton, 2007; Bramoullé et al., 2014; Bourlès et al., 2017; 2021; Bloch et al., 2021,

López-Pintado and Meléndez-Jiménez, 2021). The main goal of this literature is to characterize the

impact of network geometry on behavior.

Most papers on network games assume that players have complete information about the network

to which they belong (see, for example, Goyal and Moraga-González, 2001; Ballester et al., 2006;

Bramoullé and Kranton, 2007; Bramoullé et al., 2014; Bourlès et al., 2017; 2021). This is a strong

assumption that may not be true in reality; even when complete information is available, people show

cognitive limitations in their ability to encode and recall the network (Brashears et al., 2015; Dessi

et al., 2016). On the other hand, a wide range of equilibrium outcomes is possible when players have

complete information about the network, making it difficult to draw general conclusions about the

effects of network structure on behavior. A smaller body of work assumes that players’ information

is limited to a particular aspect of the network architecture. Galeotti et al. (2010), for example,

consider a setup in which players know only their number of friends (their degree) and their beliefs

about the network are summarized by a probability degree distribution. An important contribution

of this work is the identification of conditions under which equilibrium actions depend monotonically

on players’ degrees.1

The information setup of Galeotti et al. (2010) applies to many real-life situations. A person

may decide to learn a language, start a business, get vaccinated, etc., based solely on her expected

number of future interactions, without necessarily knowing the identity of her future contacts. In

such a situation, the only network characteristic that influences her decision may be the number

of people she expects to interact with from a relatively unbounded population (e.g., a country).

A natural way to model this type of situation (in which the network is typically very large and

decisions are made before links are formed) is to identify network beliefs with a probability degree

distribution, setting aside beliefs about other network aspects.

Notwithstanding this, in many circumstances people have incomplete network information, but

they do know who they interact with, how popular their opponents might be, whether they know each

other, etc. (Killduf et al., 2008). Such more detailed information in turn allows network members to

deduce other properties of the network to which they belong. Indeed, research in social psychology has

shown that people who join a social group tend to create a cognitive map of the existing network–a

mental picture of the connections that captures who is connected to whom in the group (Krackhardt,
1They show that when agents have degrees with either independent probabilities or probabilities that are positively

(negatively) correlated, any symmetric equilibrium is monotonically non-decreasing (non-increasing) in players’ degrees
under strategic complements (substitutes).
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1987). For example, a newcomer to a company may discover who is popular, who shares an office with

whom, who holds what position in the company, and form mental representations of the company

network. These mental representations significantly influence one’s behavior. In contexts where such

mental representations of networks emerge (e.g., a company, a class, or a faculty), beliefs about the

network extend beyond a probability degree distribution, leading to novel research questions:

• Can we identify regularities in network beliefs in these situations with intermediate network

information? If so, can we leverage them to address the equilibrium selection problem?

• Following Galeotti et al. (2010), can we identify conditions on players’ (posterior) beliefs under

which equilibrium actions depend monotonically on certain aspects of their network position,

like the number of friends, clustering, centrality, etc.?

This paper aims to answer questions. I propose a model of Bayesian updating in which agents

have incomplete information about the network they are embedded in. Agents have an arbitrary

prior over the set of networks that could be the one they are part of. They then receive some signals

that are used to update their priors before playing the game.

I have three main results. First, the probability assigned to each feasible network geometry

increases monotonically with its degree of asymmetry, measured by the size of its automorphism

group. This result holds if the prior probability assigned to each feasible network is non-decreasing

in its degree of asymmetry and the received signals do not contradict these priors. However, it may

also hold if these conditions are not satisfied, as illustrated below. A direct implication of this finding

is that, for a variety of information structures and priors, equilibrium behavior is more influenced by

the topology of the networks that are more asymmetric, among all those that are compatible with

agents’ information.

Intuitively, the number of distinct networks that can be formed with a given geometry z is

constrained by the extent to which z is symmetric. Consider for example a population consisting of

three individuals i, j, and k. They can form a triangle only if i is connected to j, j is connected to

k, and k is connected to i. However, there are three different ways they can be arranged to form a

v-shaped structure. These are three distinct networks that differ only in the identity of the agent

with two links (i, j, or k). Thus, if both geometries (the triangle and the v-shaped structure) are

feasible given players’ information and players have uniform priors over all feasible networks, then

they will assign a higher probability to the v-shaped geometry because there are more networks with

this structure. The same may occur even if agents assign a lower probability to the networks that

are more asymmetric.2

2Suppose that each network with the v-shaped (triangle) geometry has probability 37
150

( 13
50

) according to players’
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Second, I demonstrate that the degree of symmetry of a network, as captured by the size of its

automorphism group, increases with the number of automorphically equivalent nodes (agents that

occupy the same network position) and structurally equivalent nodes (agents that have the same

neighbors). While these concepts are well-established in social network analysis (see, for example,

Burt, 1987; Faust, 1988; Borgatti and Everett, 1992; Michaelson and Contractor, 1992: Freeman,

2017) they have not been related, to the best of my knowledge, to network perception.

Finally, I provide conditions on players’ (posterior) beliefs for the existence of Bayes-Nash equi-

libria in which players’ actions can be ordered as a function of particular aspects of their network

position, which are jointly interpreted as their type. The conditions are general enough to encompass

various information setups and payoff structures. They also facilitate the identification of scenarios

in which equilibria will be reached through computational methods3 and the design of information

structures compatible with the existence of specific equilibria.

The main innovation of this work is the application of group theory to the study of network

games. The paper uncovers the potential of this machinery to mitigate the equilibrium selection

problem. Indeed, a fundamental criticism of the analysis of games under incomplete information

is that the equilibrium achieved strongly depends on the specific assumptions that are made on

beliefs (Weinstein and Yildiz, 2007). The wide variety of assumptions that can be made regarding

players’ beliefs leads to a similarly wide variety of possible equilibrium outcomes, making it difficult

to draw a general conclusion about the effects of networks on behavior. The current approach is a

first step towards mitigating this problem, which is accomplished by: (i) making a general prediction

for the impact of networks on behavior under all information setups covered by the model (namely,

that asymmetric feasible geometries tend to have a greater impact on behavior), and (ii) identifying

conditions under which equilibrium actions can be ordered as a function of specific aspects of the

agents’ network position.

As for the literature, the proposed framework provides a first step in bridging the two extreme

assumptions regarding network knowledge: extremely incomplete network information (Galeotti et

al., 2010; Jackson and Yariv, 2007; Ruiz-Palazuelos, 2021) and complete information (Goyal and

Moraga-González, 2001; Ballester et al., 2006; Bramoullé and Kranton, 2007; Bramoullé et al.,

2014). Each of these approaches leads to radically different results. The current model also adds to

the extensive literature on network cognition in social psychology and sociology (Krackhardt, 1987;

Carley, 1987; Michaelson and Contractor, 1992; Freeman, 1992; Kumbasar et al., 1994; Casciaro,

priors. If no signal contradicts these priors, the probability assigned to the v-shaped geometry is 3 ∗ 37
150

= 37
50

, while
the probability assigned to the triangle is 13

50
.

3There is a literature in computer science on games played on networks (see, for example, Kearns et al. (2001)),
which focuses on finding algorithms to compute equilibria.
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1998; Janicik and Larrick, 2005) and more recently in economics (Dessi et al. 2016; Jackson, 2019)

by characterizing network beliefs under incomplete information. There is also literature in computer

science on network games, for which the results in this paper might be particularly useful.4

The paper is organized as follows. Section 2 presents some background definitions. Section 3

provides some simple examples that illustrate the main insights of the paper. Sections 4 presents

the model and Section 5 the results in network games. Section 6 concludes.

2 Background Definitions

Let g = (N,L) be an undirected network composed of a set of agents N = {i, j, ..., z} and a set

of links L among them. Each agent is represented by a node, and there are n = |N | nodes in the

network. Let gij = 1 if i and j are linked in g and gij = 0 otherwise. The set of i’s neighbors are

the agents directly linked to i, i.e., Ni(g) = {j ∈ N : gij = 1}. The degree of node i, denoted by

ki(g) = |Ni(g)|, is the number of i’s neighbors. The (frequency) degree distribution, denoted by

Fg(k), specifies, for all k ∈ {0, 1, ..., n− 1}, the proportion of individuals that have degree k in the

network, Fg(k) =
1
n |{i ∈ N : ki(g) = k}|. Network g is fully described by a n × n adjacency matrix

A(g) = (gij)i,j∈N , where gii = 0. The set of all possible networks is G (|G| = ∞).

Remark 1. Two networks g and g′ are different if and only if A(g) ̸= A(g′).

For example, networks g and g1 in Figure 1 are distinct, since

A(g) =


gii gis gim

gsi gss gsm

gmi gms gmm

 =


0 1 1

1 0 0

1 0 0

 ̸= A(g1) =


0 1 0

1 0 1

0 1 0

 .

On the contrary, g2 and g′2 = g2 in Figure 2 represent the same network, since A(g2) = A(g′2).

The geometry of a network is the structure created by its edges. Two networks g = (N,E)

and g′ = (N ′, E′) have the same geometry if and only if there exists a bijection (an isomorphism)

f : N → N ′, such that ij ∈ E if and only if f(i)f(j) ∈ E′ (see Borgatti and Everett, 1992). If an

isomorphism exists between g and g′, then the networks are called isomorphic and denoted as g ≃ g′.

In Figure 1, g ≃ g1 ≃ g2.

An automorphism f is a bijection that preserves the adjacency matrix: f : N → N , where

ij ∈ E if and only if f(i)f(j) ∈ E. The set of all automorphisms of g is the automorphism group
4See footnote 4.
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Figure 1: Three isomorphic networks

of g, denoted by Aut(g). In Figure 2, Aut(g2) = {f, f ′} where f and f ′ are the automorphisms of

g2 that result in g2 and g′2 = g2, respectively. In Figure 3, Aut(g3) = {f, f ′, f ′′, f ′′′} where f , f ′, f ′′

and f ′′′ are the automorphisms of g3 that result in g3, g′3 = g3, g′′3 = g3 and g′′′3 = g3, respectively.

The order of Aut(g) is |Aut(g)| and captures the degree of symmetry of g.

Remark 2. The greater (lower) |Aut(g)|, the more (a)symmetric g is.

Figure 2: Automorphisms in Aut(g2) Figure 3: Automorphisms in Aut(g3)

Two nodes i and j are automorphically equivalent if and only if they occupy the same network

position. Formally, i and j are automorphically equivalent if and only if there exists an automorphism

f : N ∈ N such that f(i) = l. The notation i ≡ l means that i and l are automorphically equivalent.

In network g2 of Figure 2, m ≡ r and l ≡ o. Other pairs of agents are not automorphically equivalent.5

The network position of i in network g is oi(g). The orbit of node i is the set composed of all nodes

that occupy the same position as i, Orvi(g) = {l ∈ N : oi(g) = ol(g)}.

Node i is structurally equivalent to l iff. Ni(g)\{l} = Nl(g)\{i}, and i ≡s l means that i and l are

structurally equivalent.6 Structural equivalence is more demanding than automorphic equivalence:

it requires not only that the nodes occupy indistinguishable structural positions in the network, but

also that the identities of the agents connected to them are the same. Thus, structurally equivalent

nodes must be automorphically equivalent, but the converse is not true. For example, in network g2

5Automorphic equivalence has been used to identify social roles (Borgatti and Everett, 1992). For example,
the social role of a CEO is her distinctive set of connections to he company’s employees, directors, team leaders,
administrative staff and so on. Similarly, the social role of an employee is defined by her connections to the company’s
team leaders, the CEO and others. Thus, two individuals occupy the same position if and only if they have the same
social role.

6According to the standard definition, i and l are structurally equivalent iff. Ni(g) = Nl(g) (Burt, 1976). Our
more relaxed definition enlarges the set of structurally equivalent nodes. Thus, while the three nodes {i, j, k} that
make up a network triangle are not structurally equivalent according to the standard definition, they are according to
our definition. Note that if Ni(g) = {l} and Nl(g) = {i}, then i and l are structurally equivalent, since Ni(g) \ {l} =
Nl(g) \ {i} = /O. However, neither i nor l are structurally equivalent to an isolated node m, since Ni(g) \ {m} = {l} ̸=
Nm(g) \ {i} = /O, and Nl(g) \ {m} = {i} ̸= Nm(g) \ {l} = /O.
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in Figure 3, r ≡s m and l ≡s o, and consequently r ≡ m and l ≡ o. However, there is no pair of

structurally equivalent nodes in network g2 of Figure 2, although m ≡ r and l ≡ o. The set of nodes

that are structurally equivalent to i in network g is Ei(g) = {l ∈ N : Nl(g) \ {i} = Ni(g) \ {l}}.

3 The Effects of Network Information

Network games have been analyzed using two approaches: complete information and extremely

incomplete information. In this section, I analyze a game with strategic substitutes (hereafter referred

to as Game SS ) to illustrate the equilibrium predictions based on each of the two information

assumptions and the main insights of this paper. In the following, the network in which the players

are embedded is referred to as network g.

Game SS. Every agent in g chooses an action in X = {0, 1}. Action 1 can be interpreted as

contributing to a public good, and action 0 as not doing so. Let xi be the action of player i ∈ N

and xNi =
∑

j∈Ni(g)

xj . The utility of every i ∈ N is ui(xi, xNi) and takes the following values

ui(xi, xNi) =


1 if xi = 0 and xNi ≥ 1

0 if xi = 0 and xNi = 0

1− c− µ(xNi) if xi = 1

where c ∈ (0, 1) is a cost and µ(xNi) represents a player’s regret if she incurs the cost of playing 1

when she could have free ridden: µ(xNi) = 0 if xNi = 0 and µ(xNi) = µ ∈ [0, 1− c) otherwise.7 ■

To start, complete information is assumed. In general, this means that a vast number of equilibria

are possible.

Suppose that network g is as depicted in Figure 4(a). Each person in g is a player of Game SS and

has complete information about g. Figure 4 presents the six Nash equilibria under this information

scenario. Since all these equilibria exist for all parameter values (i.e., for all c and µ), they all are

equally likely to emerge.

Consider now, instead, the setup of Galeotti et al. (2010). In their setup, players do not know the

entire network, but only their own degree.8 Players’ (posterior) beliefs about the rest of the network

are captured by a probability degree distribution, denoted Pg(k), which specifies the probability that
7This is a "best-shot" game that applies to situations in which agents can free ride. For instance, Hendricks

and Porter (1996) show that information spillovers reduce firms’ exploratory drilling. Other examples, mentioned by
Bilodeau and Slivinski (1996), include the cleaning of shared spaces or the chairing of an academic department. For
a discussion of best-shot games, see Hirshleifer (1983).

8Agents do not even know the identity of their neighbors.
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Figure 4: Equilibria under complete information. Black (green) nodes play 0 (1).

an individual has degree k for all k ∈ {0, 1, ..., n− 1}. Galeotti et al. (2010) analyze the symmetric

Bayes-Nash equilibria that arise under these conditions by identifying players’ degrees with their

types. A symmetric strategy is therefore a mapping σ that specifies a player’s action as a function

of her type.

The setup of Galeotti et al. (2010) fits well with large populations of agents making decisions

before links are formed. They show that, under strategic complements (substitutes), any symmetric

equilibrium is monotonically non-decreasing (non-increasing) in players’ degrees when nodes have

degrees with independent probabilities or probabilities that are positively (negatively) correlated.9

Thus, in any network composed of players whose network beliefs conform to these patterns, players’

equilibrium actions can be ordered as a function of their degrees.

To illustrate, consider Game SS. Suppose that players’ beliefs about g are captured by Pg(k)

and, according to Pg(k), each node in the network has degree k ∈ {0, 1, ..., n − 1} with probability

pk, independently on the degree of any other node. Suppose the agents playing 1 are those with a

degree in set D = {k : σ(k) = 1}. When all agents follow the strategy σ, i’s expected utility from

playing 0, denoted by EUi(0, σ), is the probability that at least one of her neighbors has a degree in

D:

EUi

(
0, σ
)
= 1−

[∑
k/∈D

pk

]ki(g)
∀i ∈ N.

Let EUi

(
1, σ
)

be i’s expected utility from playing 1. In equilibrium, each i plays 0 if and only if:

EUi

(
0, σ
)
≥ EUi

(
1, σ
)
= 1− c− EUi

(
0, σ
)
µ. (1)

That is, iff.:

EUi

(
0, σ
)
≥ 1− c

1 + µ
, (2)

9They focus on games of strategic complements (substitutes) in which an additional friend playing 0 does not
affect the players’ utility. Such a property is violated, for instance, if a player’s utility depends on the average of her
neighbors’ actions.
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Since EUi

(
0, σ
)

is increasing in ki(g), players with more neighbors are more likely to have at least

one neighbor who plays 1. Therefore, if an agent with k friends plays 0 in equilibrium, then a player

with degree k′ > k must be best-responding by also playing 0. As a result, any equilibrium strategy

is characterized by a degree threshold t: σ(k) = 1 for k < t, σ(k) = 0 for k > t and σ(k) ∈ {0, 1} for

k = t.

Note that equilibrium behavior differs significantly depending on whether network information

is complete or not, even if we focus on situations where players with the same degree choose the

same actions. The equilibrium achieved depends on the specific assumptions on network beliefs. This

paper aims to: (i) analyze equilibrium behavior in setups of intermediate network information, and

(ii) provide a rationale for belief selection in network games under incomplete information in order

to mitigate the equilibrium selection problem.

To illustrate the core idea, suppose g is the network in Figure 4(a). Imagine that in absence of any

initial information about g, any network in G can be network g according to agents’ beliefs. Agents

have uniform priors over the networks in G. Then, every i ∈ N receives the following information

about g:

Ii(g) =
{
{i}, Ni(g), ki(g), [Fg(1),Fg(2),Fg(3)], n, α(g)

}
=
{
i,Ni(g), ki(g),

{
[
3

7
,
3

7
,
1

7
], 7, 3

}
, (3)

where α(g) is the number of distinct network positions. For example, a recently hired worker

may know the people she interacts with (Ni(g)), the proportion of interactions of other company

members (Fg(k)), the company size (n = 7) and the number of different professions in the firm

(α(g) = 3).10

From (3), i can infer that g has one of the two geometries appearing in Figure 5. Depending on

how agents are allocated in the network, there are different networks that could be network g given

Ii(g). In particular, there exist seven different networks that could be g according to the beliefs of

an i ∈ N with ki(g) = 3: six networks with geometry 1 and one network with geometry 2. Table 1

contains the number of feasible networks for ki(g) ∈ {1, 2}.11 Note that, regardless of ki(g), there

is a greater number of feasible networks with geometry 1. The reason is that geometry 1 is more

asymmetric: |Aut(g1)| = 6 < |Aut(g2)| = 36, where gz is a network with geometry z ∈ {1, 2}.

The larger (smaller) number of feasible networks with geometry 1 (2) results in a larger (smaller)

probabilistic weight assigned to that geometry. Thus, every i ∈ N believes that network g has
10See footnote 6.
11See Lemma B in the Appendix.
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Figure 5: Two feasible geometries given (3). In
each geometry, nodes in blue (yellow) occupy the
same network position. Nodes in dark blue (yel-
low) are structurally equivalent.

Figure 6: Equilibria of Game SS when Ii(g) is
(3). Black (green) nodes play 0 (1).

Feasible networks Geometry 1 Geometry 2
ki(g) = 1 24 4

ki(g) = 2 60 10

ki(g) = 3 6 1

Table 1: Feasible networks according to i’s
posterior beliefs.

Equilibria σ1 σ2 σ3 σ4
ki(g) = 1 1 0 0 1

ki(g) = 2 0 0 1 0

ki(g) = 3 0 1 0 1
1−c
1+µ [0, 17 ] [0, 17 ] [17 ,

6
7 ] [17 ,

6
7 ]

Table 2: Equilibrium strategies when Ii(g) is (3)
∀i ∈ N .

geometry 1 (2) with probability 6
7 (17).

12 Players make their choices on the basis of this probability

distribution. Since they do not observe the network, their actions depend not only on the topology

of the network they are part of, but also on that of all the networks that are compatible with their

information.

Suppose, for instance, that agents in g play Game SS. If all agents follow the strategy σ1 in Table

2, then EUi

(
0, σ1

)
= 6

7 (17) for ki(g) = 2 (3), since i has at least one neighbor playing 1 if and only if

g has geometry 1 (2). Analogously, EUi

(
0, σ1

)
= 0 for ki(g) = 1, since it is not possible that i has a

neighbor with degree one given Ii(g). Then, σ1 is an equilibrium strategy for 1−c
1+µ ∈ [0, 17 ]. Table 2

provides the four equilibrium strategies that arise under this information setting.

Note that the greater probabilistic weight assigned by players to geometry 1 affects their behavior.

Although there are four symmetric equilibrium strategies, the only ones that are sustainable for

most parameter values are σ3 and σ4, which are the symmetric equilibrium strategies in the most

asymmetric feasible networks under complete information (i.e., the networks with geometry 1).

Similar results tend to hold for other information setups and priors over the feasible networks.13

In summary, the above examples illustrate that:
12Observe in Table 1 that 6

7
= 24

24+4
= 60

60+10
= 6

6+1
.

13Suppose that any network with geometry 1 (2) in Figure 5 in which ki(g) = 1 has probability 0.035 (0.16)
according to i’s priors. If Ii(g) is (3) and ki(g) = 1, the posterior probability assigned by her to geometry 1 (2) is
0.035 ∗ 24 = 0.84 (0.16 ∗ 1 = 0.16).
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(i) Under complete information, multiple equilibria can exist and all them sustain for the same

parameter values.

(ii) Under extreme incomplete information (see, for example, Galeotti et al. (2010)), equilibria

depend on the assumed belief structure. Equilibrium actions depend monotonically on players’

degrees under certain conditions of the probability degree distribution.

(iii) Under intermediate network information, multiple equilibria are possible. Nonetheless, the

degree of symmetry of the feasible networks has a clear impact on behavior for a large variety

of information environments. Equilibrium actions depend on the topology of all the networks

that are compatible with players’ posteriors, but tend to depend to a greater extent on the

topology of those that are more asymmetric, since there are more networks with asymmetric

topologies.

4 Network Perception

4.1 Priors

Initially, agents have no information about the network in which they are embedded, which we refer

to as network g. They may have some prior beliefs about g, represented by a probability distribution

over a set of feasible networks. The set of feasible networks according to i’s priors is B0
i (g). The

prior probability that i assigns to gz ∈ B0
i (g) is µ0

i (gz) = pi[g = gz]. To simplify the exposition,

I assume that networks with the same geometry have identical probabilities according to players’

priors beliefs (i.e., µ0
i (gz) = µ0

i (gy) whenever |Aut(gz)| = |Aut(gy)|).14

Agents may have different priors about the set of feasible networks and their probabilities.

However, since individuals have no initial information about g, it is reasonable to assume that

B0
i (g) = G ∀i ∈ N and the networks in B0

i (g) are uniformly distributed (i.e., |B0
i (g)| = ∞ and

µ0
i (gz) ≃ 0 ∀gz ∈ B0

i (g) and ∀i ∈ N).

4.2 Information

Private information. Individuals are privately informed about a set of measurable features of their

network position, which are jointly interpreted as their type. We write ti(g) to denote the type of

agent i. Agents are informed about the same aspects of their network position (i.e., if ti(g) = ki(g),

then tj(g) = kj(g) ∀j ∈ N). Neither the identity of i nor the identity of any j ̸= i defines ti(g).
14This assumption allows a simplification of Proposition 1 and does not affect its main insight, as discussed below.
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Agents can privately know the identity of their neighbors (Ni(g)). However, no i has information

either about the neighbors of any j ̸= i or about the network position of any j ̸= i. The number of

individuals whose identity is known by i is nIi , and nIi ∈ {1, ..., ki(g) + 1}.

Common knowledge. Agents know the size of the network (n) and may have information about

the network structure as a whole (e.g., the degree distribution Fg(k)). They may also receive a signal

θ about the process of network formation. For example, θ can represent an employee’s knowledge

about the number of interactions between the company’s employees or about the type of networking

activities that take place in the company.

Denote by Ii(g) the information set of i ∈ N about network g. Below are some examples:

• Setting A. For all i ∈ N , Ii(g) =
{
{i}, ti(g),Fg(k), n

}
=
{
{i}, ki(g),Fg(k), n

}
. For example,

at the beginning of the school year, teachers may know the number of students in their class

(ki(g)), but not their identities. In addition, they may have information about Fg(k): based

on comments from previous teachers, they may know which proportion of children are more

interactive, which proportion are more introverted, etc. Teachers may also know the school

size (n).

• Setting B. For all i ∈ N , Ii(g) =
{
{i}, Ni(g), ti(g), k̄(g), n

}
=
{
{i}, Ni(g), ki(g), k̄(g), n

}
,

where k̄(g) = 1
n

∑
i∈N ki(g). For example, a virtual platform user can monitor who visits her

profile and how many visits other platform users have on average, in addition to the number

of platform users.

• Setting C. For all i ∈ N , Ii(g) =
{
{i}, ti(g), n, θ

}
=
{
{i},

(
ki(g), k̄Ni , ci(g)

)
, n, θ

}
, where

k̄Ni = 1
ki(g)

∑
j∈Ni(g)

kj(g) and ci(g) is the clustering coefficient of i; the proportion of i’s

neighbors that are connected.15 This setup is similar to that in Ruiz-Palazuelos (2021). For

example, a person invited to an event can anticipate the number of people she will interact

with (ki(g)), the average popularity of her contacts (kNi) and the probability that they are

connected (ci(g)). Similarly, she may have some information about the mechanisms that drive

network formation, as captured by θ.

4.3 Posteriors

4.3.1 Feasible networks, geometries and positions

Agents update their priors according to Bayes’ rule. The set of feasible networks according to i’s

posterior beliefs is Bi(g) = {gz : pi[g = gz | Ii(g), µ0
i (gz)]) > 0}, and bi(g) = |Bi(g)|. The networks

15Formally, ci(g) =
∑

j ̸=k,j ̸=i,k ̸=i gikgijgjk∑
j ̸=k,j ̸=i,k ̸=i gikgij

.
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in Bi(g) can have different geometries. We say that a certain geometry is feasible according to i’s

posterior beliefs if at least one network in Bi(g) has such a geometry. The set of feasible geometries

according to i’s posteriors is Gi(g) = {1, 2, ..., h}. The subset of feasible networks with geometry z is

Bz
i (g) ⊆ Bi(g), and bzi (g) = |Bz

i (g)|. In what follows, gz is a network with geometry z, ∀z ∈ Gi(g).

The posterior probability that i ∈ N assigns to network gz ∈ Bz
i (g) is µi(gz) = pi[g =

gz | Ii(g), µ0
i (gz)] =

1
bi(g)

+ κzi , where κzi is the probability premium that i assigns to each network

with geometry z on the basis of her priors and Ii(g).16 If i has uniform priors over the networks and

θ = ∅, then κzi = 0. The same is true if i has uniform priors and she knows from θ that links were

formed randomly. As mentioned earlier, a uniform prior over all possible networks is a reasonable

default when agents have no information about g until they receive the signals.

A network position is feasible according to i’s posterior beliefs if it is consistent with Ii(g), i.e.,

if there is a positive probability that i occupies that position according to her beliefs. The set of

feasible positions of i conditional on geometry z ∈ Gi(g) is Oz
i (g) = {oi(gz) : gz ∈ Bz

i (g)}. That is,

Oz
i (g) is the set of positions that i can occupy in the network if it has geometry z. The number of

nodes that represent a feasible position of i conditional on g having geometry z is nz
i (g).

17 Thus,

if gz = (N z, Ez) is a network with geometry z, nz
i (g) = |{i ∈ N z : oi(gz) ∈ Oz

i (g)}|. The following

example illustrates these concepts.

Example 1. Let g = g2, where g2 is shown in Figure 8. Assume B0
i (g) = G ∀i ∈ N , and agents

have uniform priors over the networks in G. Suppose Ii(g) =
{
{i}, ti(g), [Fg(1),Fg(2),Fg(3)], n

}
={

{i}, ki(g), [12 ,
1
3 ,

1
6 ], 6

}
∀i ∈ N . Figure 7 depicts Gi(g) = {1, 2, 3} ∀i ∈ N . Figure 8 represents

a subset of feasible networks according to i’s beliefs:18 {g1, g4} ⊆ B1
i (g), {g2, g5} ⊆ B2

i (g) and

{g3, g6} ⊆ B3
i (g). In this example, O1

i (g) = {oi(g1), oi(g4)}, O2
i (g) = {oi(g2), oi(g5)} and O3

i (g) =

{oi(g3), oi(g6)}, and nz
i (g) = 3 ∀z ∈ {1, 2, 3}. ■

In Example 1, all agents have identical posteriors about the set of feasible geometries. This is a

general property of agents’ beliefs when the following conditions hold.

Claim 1. If agents have identical priors about the feasible networks and their common knowledge

includes the frequency distribution of types, then Gi(g) = G ∀i ∈ N and nz
i = ny

i ∀z, y ∈ G.

Note that, when the conditions in Claim 1 hold, the private information does not provide any
16Clearly, κz

i can be negative.
17Equivalently, nz

i (g) is the number of agents in a network with geometry z that occupy a feasible position of i.
18Note that ki(g) = 1 in network g.
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Figure 7: Feasible geometries in Example 1.
Nodes in blue (yellow) are automorphically equiv-
alent. Nodes in dark blue (yellow) are structurally
equivalent.

Figure 8: A subset of Bi(g) in Example 1

information about the network structure beyond that conveyed by the common knowledge. Therefore,

Gi(g) = G ∀i ∈ N . Example A in the Appendix shows that this symmetry in beliefs may not exist

if the conditions in Claim 1 are not satisfied.

4.3.2 Probability distribution of feasible geometries

The posterior probability that i assigns to geometry z ∈ Gi(g) is:

ρzi (g) =
∑

gz∈Bz
i (g)

µi(gz) = bzi (g)
( 1

bi(g)
+ κzi

)
. (4)

Proposition 1 uncovers a negative relationship between the degree of symmetry of a geometry

and the probability assigned to it according to agents’ posterior beliefs.19

Proposition 1. Every i ∈ N believes that network g has geometry z ∈ Gi(g) with probability:

ρzi =
1

1 +
∑

x∈Gi(g)\{z}

nx
i (g)|Aut(gz)|

nz
i (g)|Aut(gx)|

+
(nIi − 1)!(n− nIi)! n

z
i (g)

|Aut(gz)|︸ ︷︷ ︸
bzi (g)

κzi ∀z ∈ Gi(g),

where nIi ∈ {1, ..., ki(g) + 1} is the number of nodes whose identity is known by i.

Proposition 1 states that the probability that i assigns to geometry z depends on three aspects:20

(i) the number of nodes that represent a feasible position of i conditional on geometry z (i.e., nz
i (g)),

19As mentioned earlier, the fact that µ0
i (gz) = µ0

i (gy) holds whenever |Aut(gz)| = |Aut(gy)| makes the expression
in Proposition 1 simpler, since all networks with geometry z have the same probability according to i’s beliefs. As
explained in the proof of Proposition 1 (in the Appendix), this assumption does not affect the main insight of the
proposition.

20ρzi also depends on nIi , but this number does not vary with z.
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(ii) z’s degree of symmetry (captured by |Aut(gz)|), and (iii) the probability premium that i assigns

to z (which depends on her priors and θ). The larger nz
i (g) is, the larger the number of network

locations that i can occupy in the network if it has geometry z, and the greater the likelihood that g

has such a geometry. However, the larger |Aut(gz)| is, the smaller will be the array of feasible networks

with geometry z, and the lower the likelihood that one of them is the network that i is part of. Recall

that |Aut(gz)| captures the degree of the adjacency matrix’s invariance under permutations of the

network node labels. If |Aut(gz)| is large, the degree of invariance under permutations is high, and

the number of different networks with geometry z that can be obtained by permuting the network

node labels is small and vice versa.21 Thus, if κzi does not increase with |Aut(gz)| (which is the case

if the prior probability assigned to networks with geometry z does not increase with |Aut(gz)| and

θ does not reverse these priors), then ρzi increases monotonically with the degree of asymmetry of z,

ceteris paribus.

Note that since asymmetric networks are more numerous, agents can assign a larger probability

to asymmetric geometries even if the symmetric networks are more likely according to their priors.22

The inverse relationship between |Aut(gz)| and ρzi is even more pronounced when the conditions in

Claim 1 are satisfied, as the following corollary highlights.

Corollary 1. If the conditions in Claim 1 are satisfied, then ρzi = ρz = 1

1+
∑

x∈G\{z}

|Aut(gz)|
|Aut(gx)|

∀z ∈ G

and ∀i ∈ N .

Proposition 1 relates the degree of symmetry of a geometry to the probability that players

assign to it. But, which network features determine a geometry’s degree of symmetry? The following

proposition relates the presence of automorphically equivalent and structurally equivalent agents in

a network to the order of its automorphism group.

Proposition 2. Let g = (N,E) and g′ = (N ′, E′) two networks such that N = N ′. If |Orvi(g)| ≤

|Orvi(g
′)| and |Ei(g)| ≤ Ei(g

′)| ∀i ∈ N and for some i ∈ N either (i) |Orvi(g)| < |Orvi(g
′)| or (ii)

|Ei(g)| < Ei(g
′)| or both, then |Aut(g)| < |Aut(g′)|.

Example 2. Consider the networks in Figure 8. Since |Orvi(g2)| = |Orvi(g3)| ∀i ∈ N , |Er(g2)| <

|Er(g3)| for r ∈ {r,m, l, o} and |Ej(g2)| = |Ej(g3)| for j ∈ {j, i}, then |Aut(g3)| = 4 > |Aut(g2)| =
21Suppose for instance that gz is a fully symmetric network, i.e., everyone is connected with everyone else. Since all

nodes in the network occupy the same position, no permutation of the node labels modifies the network position of any
agent. In that case, network gz is the only one with geometry z. Imagine to the contrary that gz is fully asymmetric.
Given that all nodes occupy a distinct network position, each permutation of the node labels in gz gives rise to a
network that is distinct from gz but has the same geometry as gz.

22See footnote 14.
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223. Similarly, since |Orvi(g3)| ≥ |Orvi(g1)| and |Ei(g3)| ≥ |Ei(g1)| ∀i ∈ N and |Em(g3)| > |Em(g1)|

for m ∈ {m, r}, then |Aut(g3)| = 4 > |Aut(g1)| = 2. ■

4.3.3 Inference about Network Features

Agents can infer the probability distribution of any network feature from their information. For

example, they can learn the probability that their neighbors have certain types, even if they do not

receive this information directly.

Define tNi(g) =
(
t1(g), ..., tki(g)

)
as the vector of types of i’s neighbors in network g, where tj(g)

is the type of neighbor j (j = 1, 2, ..., ki(g)). Let tki = (t1, t2, .., tki) be a feasible value of tNi(g).

Conditional on g having geometry z, the number of nodes representing a feasible position of i and

having neighbors whose types are given by the vector tki is nz
i

(
g | tki

)
.24 The following proposition

defines the probability that i has particular types of neighbors according to her posteriors. Example

D in the Appendix illustrates.

Proposition 3. The probability that i has neighbors of types tki is:

pi
[
tNi(g) = tki

]
=

∑
z∈Gi(g)

nz
i

(
g | tki

)
nz
i (g)

ρzi .

Proposition 3 characterizes the probability that i’s neighbors have types given by vector tki . By

an analogous reasoning, the probability that i has a neighbor with a type set T is:

pi[j ∈ Ni(g) : tj(g) ∈ T ] =
∑

z∈Gi(g)

nz
i

(
g |T

)
nz
i (g)

ρzi , (5)

where nz
i

(
g |T

)
is the number of agents in a network with geometry z that occupy a feasible

position of i and have some neighbor with a type in T .

5 Network Games

Following Galeotti et al. (2010) and Feri and Pin (2020), posteriors are taken as primitive to analyze

the symmetric Bayes-Nash equilibria of the games.
23See Figure 2 and Figure 3.
24Formally, if gz = (Nz, Ez) is a network with geometry z, then nz

i (g) = |{i ∈ Nz : oi(gz) ∈ Oz
i (g)∧ tNi(gz) = tki}|.
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5.1 Equilibrium Behavior

Let X be the set of actions. A strategy σ is symmetric if and only if σ(ti(g)) = σ(tj(g)) ∀i, j :

ti(g) = tj(g), where σ(ti(g)) ∈ X is i’s action, as specified by σ. The profile of actions of i’s neighbors

in network g induced by σ is σ(tNi(g)) =
(
σ(t1(g)), σ(t2(g)), ..., σ(tki(g))

)
. When tNi(g) = tki , this

profile is σ(tki). To simplify notation, i’s action is sometimes denoted by xi, where xi = σ
(
ti(g)

)
.

The utility of i when all agents follow the strategy σ is denoted by ui(xi,σ(tNi)).

Depending on how the types are defined, it is natural to specify a particular order relationship

≻ over the type space.25 Regardless of how the order ⪰ is defined, a symmetric strategy σ is

monotonically non-decreasing if and only if σ
(
ti(g)

)
≥ σ

(
tj(g)

)
when ti(g) ⪰ tj(g). Likewise, σ is

monotonically non-increasing if and only if σ
(
ti(g)

)
≤ σ

(
tj(g)

)
when ti(g) ⪰ tj(g).

Definition. A symmetric strategy σ constitutes a Bayes-Nash equilibrium if and only if, for all

x′i:

EUi

(
xi, σ

)
=
∑
∀tki

ui
(
xi,σ(tki)

)
∗

 ∑
z∈Gi(g)

nz
i

(
g | tki

)
nz
i (g)

ρzi

 ≥ EUi

(
x′i, σ

)
.

The above condition shows that, for a wide range of priors and information environments, the

topology of networks that are more asymmetric, among those that are compatible with the players’

information, has a greater impact on equilibrium actions. For illustration, suppose that network g

is the one depicted in Figure 4(a). Imagine that, for all i ∈ N , B0
i (g) = G, Ii(g) is (3) and i has

uniform priors over the networks in G. As introduced in Section 3, the two geometries in Figure 5 are

the feasible geometries given Ii(g); each i assigns probability ρ1i = 6
7 to geometry 1 and probability

ρ2i =
1
7 to geometry 2. Suppose that all agents in g play the game of strategic substitutes presented

in Section 3 (Game SS). In this case, an agent wants to play 0 if and only if (2) holds. If all agents

follow σ1 in Table 2:

EUi

(
0, σ1

)
=ui

(
0,σ1((2, 2))

)
∗

(
n1
i

(
g | (2, 2)

)
n1
i (g)

ρ1i

)
+ ui

(
0,σ1((1, 1))

)
∗

(
n2
i

(
g | (1, 1)

)
n2
i (g)

ρ2i

)
=

1

7
,

since ki(g) = 3. Thus, since it is unlikely according to i’s beliefs that her friends have degree 1, i

only free rides if the cost of playing 1 or the regret of not playing 0 is high ( 1−c
1+µ ≤ 1

7). By contrast,

25For example, if a player’s type is jointly defined by her degree and the average degree of her neighbors it can be
reasonable to say that ti(g) ⪰ tj(g) if and only if ki(g) ≥ kj(g) and k̄Ni ≥ k̄Nj in some contexts. In others, however,
it may be more reasonable to establish that ti(g) ⪰ tj(g) if and only if ki(g) ≥ kj(g) and k̄Ni ≤ k̄Nj .
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if types playing 1 are those with degree of two (i.e., the types of i’s neighbors in any network with

geometry 1), then i’s expected utility from playing 0 is 6
7 , and i best responds with action 0 for

a broader range of parameter values ( 1−c
1+µ ≤ 6

7). As can be seen in Table 2, the unique symmetric

equilibrium strategies are σ3 and σ4 for most parameter values, which are the symmetric equilibrium

strategies under complete information in the most asymmetric feasible networks. Such a result is a

direct consequence of the following remark:

Remark 3. The degree of substitutability between players’ actions and the actions of their feasible

neighbors increases with the degree of asymmetry of the networks to which such neighbors belong,

ceteris paribus.

Let Tx(σ) be the set of types for which σ specifies action x ∈ {0, 1}. In Game SS, the equilibrium

condition is simple; it only depends on the probability that at least one of i’s neighbors is of a type

in set T1(σ). The same applies in the following game of strategic complements (referred to as Game

SC), as Remark 4 highlights.

Game SC. Every i chooses an action in X = {0, 1}. An example might be purchasing a software

package. An individual may only decide to purchase the software if a neighbor of hers is already

using it. Thus:

ui(xi, x̄Ni) =


1− c if xi = 1 and xNi ≥ 1

−c if xi = 1 and xNi = 0

−µ(x̄Ni) if xi = 0

where µ(xNi) = 0 if xNi = 0 and µ(xNi) = µ ∈ [0, c) otherwise. In this case, µ represents the regret

of players when they chose action 0 and observe that they could have obtained a larger payoff by

playing 1. ■

Remark 4. For Game SS (SC), σ constitutes a Bayes-Nash equilibrium if and only if, for each

player i of a type in T0(σ) (T1(σ)):

∑
z∈Gi(g)

nz
i

(
g |T1(σ)

)
nz
i (g)

ρzi ≥ h

.

where h = 1−c
1+µ in Game SS and h = c

1+µ in Game SC, while the reverse inequality holds for each

player with a type in T1(σ) (T0(σ)).
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Monotonicity of equilibria. The above examples show that the belief structure that emerges

under incomplete information does not generally lead to an equilibrium in which players’ actions

vary monotonically by type, even if network information is very limited. Galeotti et al. (2010) iden-

tify conditions on players’ posterior beliefs under which players’ actions vary monotonically with

their degrees. Proposition 4 complements their results by identifying conditions under which equi-

librium actions depend monotonically on alternative features of players’ network position, about

which agents are informed once the network is realized. The condition makes it possible to deter-

mine computationally under which information structures an equilibrium is reached, and to design

information scenarios consistent with the existence of monotone equilibria.26.

Proposition 4. If for every symmetric equilibrium strategy σ and for all x′ ≥ x:

∑
∀tki

[
ui
(
x,σ(tki)

)
− ui

(
x′,σ(tki)

]  ∑
z∈Gi(g)

nz
i

(
g | tki

)
nz
i (g)

ρzi


is non-decreasing (non-increasing) in i’s type for all i ∈ N , then every symmetric equilibrium strategy

is monotonically non-increasing (non-decreasing).

Consider, for instance, Game SS (Game SC). The strategy σ is monotonically non-increasing if

∀i, j : ti(g) ⪰ tj(g):

EUi (0, σ)− EUi (1, σ) ≥ EUj (0, σ)− EUj (1, σ) ,

and monotonically non-decreasing if the reverse inequality holds. In terms of our framework, this

holds if the following conditions are satisfied.

Corollary 2. Assume agents in g play Game SS (Game SC). The strategy σ is monotonically

non-increasing (non-decreasing) if ∀i, j : ti(g) ⪰ tj(g):

∑
z∈Gi(g)

nz
i

(
g |T1(σ)

)
nz
i (g)

ρzi ≥
∑

z∈Gj(g)

nz
j

(
g |T1(σ)

)
nz
j (g)

ρzj , (7)

and monotonically non-decreasing (non-increasing) if the reverse inequality holds.

Corollary 2 shows that the existence of a monotone non-decreasing (non-increasing) equilibrium

depends solely on the distribution of types in feasible networks and on the probabilities of the

feasible geometries. Equilibrium actions in games with strategic substitutes (strategic complements)
26See footnote 4
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can increase or decrease with the types of the players depending on their network beliefs. This

constitutes an important difference from Galeotti et al. (2010), where the existence of non-increasing

(non-decreasing) equilibria is related to whether the actions of players reinforce or offset each other.

5.2 Equilibrium Welfare

In my framework, the set of symmetric equilibria does not (only) depend on the geometry of g,

but on the geometry of all the feasible geometries. Given a belief structure, the set of symmetric

equilibria is the same in all networks that have a feasible network geometry. However, the payoffs

in these networks may differ if their geometries are different. Consider, for example, two networks

g1 and g2 with geometries 1 and 2, respectively, as shown in Figure 5. The four strategies in Table

2 are equilibrium strategies when, for all i ∈ N , Bi(g) = G, Ii(g) is (3) and agents have uniform

priors over the networks. However, when all agents play σ3, the sum of players’ payoffs is 7− 3c in

g1, while it is 4− 3c in g2. Similarly, conditional on σ4, the total welfare is 7− 4c in g1 and 4− 4c in

g2. Since geometry 1 is more likely in players’ beliefs, equilibrium welfare is higher in networks with

geometry 1 for most parameter values.

The following proposition reveals a relationship between the degree of asymmetry of a network

and the welfare obtained by its members in equilibrium. Let Wti(σ, gz) be the average welfare of

players of type ti in gz conditional on σ. Assume that the set of feasible geometries is Gi(g) = G

∀i ∈ N . If conditional on g having a more asymmetric geometry in G the average welfare of each

type in Tx(σ) is at least as high as that of each type in Tx(σ
′), then σ is an equilibrium strategy for

at least the same parameter values as σ′.

Proposition 5. Suppose that agents are playing Game SS or Game SC and the conditions in

Claim 1 hold. Let σ and σ′ be two symmetric equilibrium strategies. If ∀i, j ∈ N : σ(ti(g)) = σ′(tj(g))

∑
z∈G(g):|Aut(gz)|≤q

Wti(σ, gz) ≥
∑

z∈G(g):|Aut(gz)|≤q

Wtj (σ
′, gz) ∀q, (8)

then σ is an equilibrium for at least the same range of parameter values as σ′. The strategy σ is

an equilibrium for a broader range of parameter values than σ′ if, additionally, (8) holds with strict

inequality for some i, j ∈ N : σ(ti(g)) = σ′(tj(g)
)

and some q.

Finally, the following proposition provides a sufficient condition for a network to be efficient.

Network g is efficient if the aggregate welfare of its members in equilibrium is at least as high as

that in any other network with a feasible geometry.
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Proposition 6. Suppose the conditions in Claim 1 hold, network g has geometry z ∈ G(g), and

µ = 0. Then, network g is efficient if:

1. c < ρz

ni(g)
in Game SS, or

2. 1− c < ρz

ni(g)
in Game SC ,

where ρz

ni(g)
≤ ρz

nj(g)
∀j ∈ N .

6 Concluding Remarks

Empirical research demonstrates the importance of social networks in explaining behavior in strategic

contexts. However, the analysis of network games raises a fundamental problem: even if one focuses on

a particular network, multiple equilibria are possible, making it difficult to draw general conclusions

about the effects of network structure on behavior. To the best of my knowledge, this paper is the

first to apply group theory to the study of network games. The main contribution of this work

is to show the potential of this approach for analyzing equilibrium behavior and mitigating the

equilibrium selection problem.

The paper shows that, given a large set of priors and information structures, individuals assign

a greater probability to the feasible geometries that are more asymmetric. This finding provides a

microfoundation for belief selection in the analysis of network games under incomplete information,

and can help to identify perception biases in the empirical study of an individual’s social perception.

Given the paucity of economic research on network perception, the results will hopefully stimulate

further research on this subject.
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Appendix

A. Definitions

I first provide some definitions that are necessary for the proofs in Section C.

Stabilizer of a node. The stabilizer of a set of nodes N̄ in g is the set of all automorphisms

that map each node in N̄ into itself, StabN̄ (g) = {f ∈ Aut(g) : f(i) = i ∀i ∈ StabN̄ (g)}.

In network g2 in Figure 2, Aut(g2) = Stabi(g2) = {f, f ′}, resulting in g2 and g′2 in Figure 2,

respectively. In network g3 in Figure 3, Aut(g3) = Stabi(g3) = {f, f ′, f ′′, f ′′′}, resulting in g3,

g′3 = g3, g′′3 = g3 and g′′′3 = g3 in the same figure, respectively.

The Orbit-Stabilizer Theorem. Let Stabi(g) = {f ∈ Aut(g) : f(i) = i} be the stabilizer of

node i ∈ N . Then,

|Aut(g)| = |Orvi(g)| ∗ |Stabi(g)| .

B. Isomorphisms of a Graph

Two networks are isomorphic if and only if they have the same geometry. Let N̄ be a subset of

nodes N̄ ⊆ N , with n̄ = |N̄ |. Lemma A calculates the number of distinct labelings of the nodes

in N \ N̄ . That is, the number of distinct networks with the same geometry as g that can be

obtained by permuting exclusively the labels of the nodes in N \ N̄ . This number is denoted

y(g | N̄)

Labels of the nodes in N̄ are not permuted, they are maintained fixed. Notice that in some cases

we may permute the labels of some nodes in N \ N̄ without any incidence in the adjacency

matrix of the network. In other words, we may permute the labels of some nodes in N \ N̄ and

get a network g′ = g. The set of different ways in which we can (exclusively) permute the labels

of the nodes in N \ N̄ without affecting the adjacency matrix of g is given by the stabilizer of

N̄ , StabN̄ (g).

Lemma A. Let g = (N,E). The total number of distinct isomorphic networks to g that can be

obtained by exclusively permuting the labels of the nodes in N \ N̄ is:

y(g | N̄) =
(n− n̄)!

|StabN̄ (g)|
.

Proof. There are (n− n̄)! possible permutations of the labels of the nodes in N \ N̄ . For each of

these (n− n̄)! possible permutations, |StabN̄ (g)|−1 of the others are identical: they produce the
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same network (network g). This is because for each of these permutations there are |StabN̄ (g)|

different ways in which we can permute the labels of the nodes in N \ N̄ without altering the

adjacency matrix of the network. Thereby, y(g | N̄) = (n−n̄)!
|StabN̄ (g)| . Example B (in Section D of

this Appendix) illustrates Lemma A. ■

C. Proofs

The proofs make use of the concepts defined in Section A in this Appendix. Lemma B calculates

the total number of feasible networks according to i’s posterior beliefs.

Lemma B. Let gz ∈ Bz
i (g) and nIi the number of nodes whose identity is known by i. According

to i’s posterior beliefs:

bzi (g) =
(nIi − 1)!(n− nIi)! n

z
i (g)

|Aut(gz)|
and bi(g) =

∑
z∈Gi(g)

bzi (g)

Proof. (i) Assume first that i has no information about the identity of her neighbors (nIi = 1).

If the set of feasible positions of i conditional on geometry z is Oz
i (g) =

{
oi(gz), oi(gs),... , oi(gl)

}
(where {gz, gs, ..., gl} ⊆ Bz

i (g)), then there exist at least one feasible network in which i occupies the

position oi(gz), at least one feasible network in which i occupies the position oi(gs), and similarly for

other positions in Oz
i (g). By Lemma A, there are y

(
gz | {i}

)
= (n−1)!∣∣Stabi(gz)∣∣ networks in Bz

i (g) in which

i occupies the position oi(gz); all these networks differ in how agents different from i are allocated.

Similarly, there are y
(
gs | {i}

)
= (n−1)!∣∣Stabi(gs)∣∣ networks in Bz

i (g) where i occupies the position oi(gs),

and analogously for other positions in Oz
i (g). Hence, if Oz

i (g) = {oi(gz), oi(gs), ..., oi(gl)}:

bzi (g) = y
(
gz | {i}

)
+ y
(
gs | {i}

)
+ ...+ y

(
gl | {i}

)
=

(n− 1)!∣∣Stabi(gz)∣∣ + (n− 1)!∣∣Stabi(gs)∣∣ + ...+
(n− 1)!∣∣Stabi(gl)∣∣

=
(n− 1)!

∣∣Orvi(gz)
∣∣∣∣Aut(gz)∣∣ +

(n− 1)!
∣∣Orvi(gs)

∣∣∣∣Aut(gs)∣∣ + ...+
(n− 1)!

∣∣Orvi(gl)
∣∣∣∣Aut(gl)∣∣ =

(n− 1)! nz
i (g)

|Aut(gz)|
.

where the penultimate equality holds applying the Orbit-Stabilizer Theorem (in Section A of this

Appendix) and noticing that |Aut(gz)| = |Aut(gs)| = ... = |Aut(gl)| and
∣∣Orvi(gz)

∣∣ + ∣∣Orvi(gs)
∣∣ +

...+
∣∣Orvi(gl)

∣∣ = nz
i (g).

(ii) When i knows her identity but not that of her neighbors is bzi (g) =
(n−1)! nz

i (g)
|Aut(gz)| . Note that,
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in this case, there are
(

n−1
nIi

−1

)
feasible identities for i’s neighbors. If i knows Ni(g), there is only one

feasible identity for i’s neighbors. Hence, if Ni(g) ∈ Ii(g):

bzi (g) =
1(

n−1
nIi

−1

) (n− 1)! nz
i (g)

|Aut(gz)|
=

(nIi − 1)!(n− nIi)! n
z
i (g)

|Aut(gz)|
.

■

Proof of Proposition 1.

(a) Suppose that κzi = 0. Considering Lemma B (above) and operating:

ρzi =
bzi (g)

bi(g)
=

1

1 +
∑

x∈Gi(g)\{z}

nx
i (g)|Aut(gz)|

nz
i (g)|Aut(gx)|

. (9)

(b) If κzi ̸= 0:

ρzi =
1

1 +
∑

x∈Gi(g)\{z}

nx
i (g)|Aut(gz)|

nz
i (g)|Aut(gx)|

+ bzi (g)κz,

where bzi (g) is calculated in Lemma B. Example C (in this Appendix) illustrates.

(c) In my analysis, I assume that µ0
i (gz) = µ0

i (gy) whenever |Aut(gz)| = |Aut(gy)|. If this

assumption is relaxed, the posterior probability assigned to gz by i would be:

µi(gz) =
1

bi(g)

(
1 + κi(gz)

)
,

where κi(gz) is the probability premium that i assigns to gz based on θ and her priors. Under

this scenario:

ρzi =
bzi (g)

bi(g)
+

∑
gz∈Bz

i (g)

κi(gz).

Note that the main insight of Proposition 1 maintains: if the prior probability assigned to the

networks is non-decreasing in their degree of asymmetry and θ does not contradict these priors, then

ρzi is decreasing in |Aut(gz)|. Example C (in Section D of this Appendix) illustrates Proposition 1.

■

Proof of Proposition 2. Since |Orvi(g)| ≤ |Orvi(g
′)| ∀i ∈ N , for each automorphism f : N →

N exists there is an identical automorphism f : N ′ → N ′. If ∃i ∈ N :
∣∣Orvi(g)

∣∣ < ∣∣Orvi(g
′)
∣∣, then

there exist at least one automorphism in g′ that does not exist in g. Thereby,
∣∣Aut(g)∣∣ < ∣∣Aut(g′)∣∣.

27



I now prove that if
∣∣Orvi(g)

∣∣ = ∣∣Orvi(g
′)
∣∣∀i ∈ N , and ∃m ∈ N ′ :

∣∣Em(g)
∣∣ < ∣∣Em(g′)

∣∣, then∣∣Aut(g)∣∣ < ∣∣Aut(g′)∣∣. Suppose ∃m ∈ N ′ : |Em(g′)| > |Em(g)|. For each r ∈ Em(g′) \ Em(g), there

exists an automorphism f : N ′ → N ′ such that:

f(w) =


r if w = m

m if w = r

w otherwise

On the contrary, there does not exist such an automorphism between m and r in network g,

since r /∈ Em(g). As a result,
∣∣Aut(g)∣∣ < ∣∣Aut(g′)∣∣.

■

Proof of Proposition 3.

(i) Assume first that i does not know the identity of her neighbors (nIi = 1). Define Oz
i (g | tki)

as the set of i’s feasible positions such that, if i has occupies any of these positions, then: (i) i is

part of a network with geometry z, and (ii) i she has neighbors with types given by the vector tki .

That is:

Oz
i (g | tki) = {oi(gz) ∈ Oz

i (g) : tNi(gz) = tki}.

The probability that i ∈ N has neighbors with types tki is the probability that i occupies a

position in Oz
i (g | tki) =

{
oi(gz), oi(gy), ..., oi(gr)

}
. According to Lemma A (in this Appendix),

there exist y
(
gz | {i}

)
= (n−1)!∣∣Stabi(gz)∣∣ feasible networks according to i’s beliefs in which i occupies the

position oi(gz). Analogously, there are y
(
gy | {i}

)
= (n−1)!∣∣Stabi(gy)∣∣ feasible networks in which i occupies

the position oi(gy), and similarly for other positions in Oz
i (g | tki). Then, conditional on network g

having geometry z, the probability that i has neighbors with types tki is:

p
[
oi(g) ∈ Oz

i (g | tki) | Ii(g)
]
=
[
y(gz | {i}) + y(gy | {i}) + ...+ y(gr | {i})

]( 1

bi(g)
+ κz

)
=

[
(n− 1)!

|Stabi(gz)|
+

(n− 1)!

|Stabi(gy)|
+ ...+

(n− 1)!

|Stabi(gr)|

]( 1

bi(g)
+ κz

)
.

(10)

Applying the Orbit-Stabilizer Theorem (in Section A) and noticing that |Aut(gz)| = |Aut(gy)| =

... = |Aut(gr)|
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p
[
oi(g) ∈ Oz

i (g | tki) | Ii(g)
]

=

[
(n− 1)!|Orvi(gz)|

|Aut(gz)|
+

(n− 1)!|Orvi(gy)|
|Aut(gy)|

+ ...+
(n− 1)!|Orvi(gr)|

|Aut(gr)|

]( 1

bi(g)
+ κz

)
=

[
(n− 1)! nz

i (g | tki)
|Aut(gz)|

]( 1

bi(g)
+ κz

)
.

(11)

By Lemma B, bi(g) =
∑

z∈Gi(g)

bzi (g) =
∑

z∈Gi(g)

(n−1)! nz
i (g)

|Aut(gz)| . Substituting bi(g) into (11) and operat-

ing:

p
[
oi(g) ∈ Oz

i (g | tki) | Ii(g)
]
=

nz
i (g | tki)
nz
i (g)

[
1

1 +
∑

x∈Gi(g)\{z}

nx
i (g)|Aut(gz)|

nz
i (g)|Aut(gx)|

+
(n− 1)! nz

i (g)

|Aut(gz)|
κz

]
. (12)

Then, the probability that i has neighbors with types tki given Ii(g) is:

p
[
tNi(g) = tki | Ii(g)

]
=

∑
z∈Gi(g)

nz
i (g | tki)
nz
i (g)

ρzi .

(i) If i has information about the identity of her neighbors (i.e., nIi > 1), the equivalent expression

to (12) is:

p
[
oi(g) ∈ Oz

i (g | tki) | Ii(g)
]
=

nz
i (g | tki )
nz
i (g)

[
1

1+
∑

x∈Gi(g)\{z}

nx
i
(g)|Aut(gz)|

nz
i
(g)|Aut(gx)|

+
(nIi

−1)!(n−nIi
)! nz

i (g)

|Aut(gz)| κz

]
and the result follows.

■

Proposition 5.

(i) Game SS. Recall that T1(σ) is the set of types that play 1 according to σ. Conditional on g

having geometry z, the proportion of type ti agents occupying a feasible position of i and having a

neighbor with a type in T1(σ) is: nz
i (g | T1(σ))

nz
i (g)

. Observe that:

Wti(σ, gz) =


nz
i (g | T1(σ))

nz
i (g)

if σ(ti(g)) = 0

(1− c)− nz
i (g | T1(σ))

nz
i (g)

µ if σ(ti(g)) = 1.

(a) Suppose σ(ti(g)) = 0. The expected utility of i of playing σ(ti(g)) = 0 conditional on σ is:

EUi

(
0, σ
)
=
∑
z∈G

nz
i (g | T1(σ))

nz
i (g)

ρz =
∑
z∈G

Wti(σ, gz) ρz .
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Action σ(ti(g)) = 0 is a best response if and only if (2) holds. That is, iff.:

1− c

1 + µ
≤ t =

∑
z∈G

Wti(σ, gz) ρ
z. (13)

Likewise, σ′(tj(g)) = 0 is a best response iff.:

1− c

1 + µ
≤ t′ =

∑
z∈G

Wtj (σ
′, gz) ρ

z. (14)

Recall that ρz increases the degree of asymmetry of z (see Corollary 1). Therefore, if

∑
z∈G:|Aut(gz)|≤q

Wti(σ, gz) ≥
∑

z∈G:|Aut(gz)|≤q

Wtj (σ
′, gz) ∀q (15)

is satisfied, then t ≥ t′, since the weighted sum in the right size of (13) is greater than that in

(14). As a result, σ(ti(g)) = 0 is a best response for at least the same range of parameter values as

σ′(tj(g)) = 0.

(b) Suppose now that σ(ti(g)) = 1 and σ′(tj(g)) = 1. In this case, σ(ti(g)) = 1 is a best response

iff.:

1− c

1 + µ
≥ t =

∑
z∈G

nz
i (g | T1(σ))

nz
i (g)

ρz, (16)

while σ′(tj(g)) = 1 is a best response iff.:

1− c

1 + µ
≥ t′ =

∑
z∈G

nz
j (g | T1(σ

′))

nz
j (g)

ρz. (17)

Note that, if σ(ti(g)) = σ′(tj(g)) = 1, then (15) is satisfied if and only if:

∑
z∈G:|Aut(gz)|≤q

nz
i (g | T1(σ))

nz
i (g)

≤
∑

z∈G:|Aut(gz)|≤q

nz
j (g | T1(σ

′))

nz
j (g)

∀q. (18)

If (18) hold, then t ≤ t′, and σ(ti(g)) = 1 is an equilibrium strategy for at least the same range

of parameter values as σ′(tj(g)) = 1.

(ii) As for Game SC,

Wti(σ, gz) =


nz
i (g | T1(σ))

nz
i (g)

− c if σ(ti(g)) = 1

−nz
i (g | T1(σ))

nz
i (g)

µ if σ(ti(g)) = 0.

Following a similar reasoning as for Game SS, the result follows. ■
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Proof of Proposition 6. Suppose g is a network with geometry z, g = gz. If the conditions of

Claim 1 are satisfied, then nz
i (g) = ni(g) ∀z ∈ G.

i) Game SS. Suppose that the set of feasible geometries is G = {1, 2, ..., h} and σ
(
ti(g)

)
= 0.

Let W̄ti(gz, σ) be the aggregate welfare of type ti players in gz, (i.e., the number of type ti agents

in gz with a neighbor playing 1). Recall that Wti(gz, σ) =
W̄ti (gz ,σ)

ni(g)
is the average welfare of type

ti players in gz. Imagine that W̄ti(gy, σ) > W̄ti(gz, σ), y ∈ G. That is, W̄ti(gz, σ) = W̄ti(gy, σ) − ϵ,

ϵ ≥ 1. Playing σ
(
ti(g)

)
= 0 is a best response for i if and only if (2) holds. That is, if the probability

that i has at least one neighbor playing 1 is greater than 1− c. Formally, if:

EUi

(
0, σ
)
=
∑
z∈G

nz
i (g | T1(σ))

nz
i (g)

ρz =
∑
z∈G

nz
i (g | T1(σ))

ni(g)
ρz

= Wti(σ, gz) ρ
z +Wti(σ, gy) ρ

y +
∑

s∈G\{z,y}

Wti(σ, gs) ρ
s

=
(W̄ti(σ, gy)− ϵ

ni(g)

)
ρz +Wti(σ, gy) ρ

y +
∑

s∈G\{z,y}

Wti(σ, gs) ρ
s ≥ 1− c.

Equivalently, σ(ti(g)) = 0 is an equilibrium strategy iff.:

c ≥ 1−
[
Wti(σ, gy)(ρ

z + ρy) +
∑

s∈G\{z,y}

Wti(σ, gs) ρ
s
]
+

ρz

ni(g)
ϵ. (19)

Since 1 −
[
Wti(σ, gy)(ρ

z + ρy) +
∑

s∈G\{z,y}Wti(σ, gs) ρ
s
]

is always positive and ϵ ≥ 1, (19) is not

satisfied if ρz

ni(g)
> c. Then, σ(ti(g)) = 0 is not a best response if ρz

ni(g)
> c. Given that ρz

ni(g)
≤ ρz

nj(g)

∀j ∈ N , then (19) is not satisfied for any i ∈ N when ρz

ni(g)
> c. Then, there is not a symmetric

equilibrium strategy σ: σ
(
ti(g)

)
= 0 and W̄ti(gy, σ) > W̄ti(gz, σ) for any y ∈ G.

When σ
(
ti(g)

)
= 1, W̄ti(gz, σ) = ni(g)(1 − c) = W̄ti(gy, σ) ∀gz, gy : z, y ∈ G. Then, there is

not an equilibrium strategy σ such that σ
(
ti(g)

)
= 1 and W̄ti(gy, σ) > W̄ti(gz, σ). As a result,

W̄ (σ, gz) =
∑

ti
W̄ti(σ, gz) ≥ W̄ (σ, gy) =

∑
ti
W̄ti(σ, gy) ∀y ∈ G whenever ρz

ni(g)
≥ c ∀j ∈ N .

ii) Game SC. Reasoning is analogous under strategic complements. Suppose g = gz, σ
(
ti(g)

)
= 1

and ∃gy : Wti(σ, gy) > Wti(σ, gz), y ∈ G. In equilibrium, i plays 1 if:

EUi

(
1, σ
)
=Wti(σ, gz) ρ

z +Wti(σ, gy) ρ
y +

∑
s∈G\{z,y}

Wti(σ, gs) ρ
s

=
(W̄ti(σ, gy)− ϵ

ni(g)

)
ρz +Wti(σ, gy) ρ

y +
∑

s∈G\{z,y}

Wti(σ, gs) ρ
s ≥ c.

(20)
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That is, if:

1− c ≥ 1−
[
Wti(σ, gy)(ρ

z + ρy) +
∑

s∈G\{z,y}

Wti(σ, gs) ρ
s
]
+

ρz

ni(g)
ϵ (21)

If ρz

ni(g)
> 1−c, (21) does not hold and σ

(
ti(g)

)
= 1 is not a best response for i. Since ρz

ni(g)
≤ ρz

nj(g)

∀j ∈ N , (21) is not satisfied for any j ∈ N whenever ρz

ni(g)
> 1−c. Then, applying the same reasoning

as for Game SS, the results follows. ■

D. Examples

Example A (asymmetric beliefs about the geometry). Suppose that g is g3 in Figure 8, B0
i (g) = G

∀i ∈ N and agents have uniform priors over the networks. Let Ii(g) =
{
{i}, ti(g), [Fg(1),Fg(2),Fg(3)], n

}
=
{
{i},

(
ki(g), k̄Ni

)
, [12 ,

1
3 ,

1
6 ], 6

}}
∀i ∈ N , where k̄Ni =

1
ki(g)

∑
j∈Ni(g)

kj(g). From Im(g), individual

m knows that k̄Nm = 2.5. Hence, Gm(g) = {1, 3}, as depicted in Figure 7. Conditional on Il(g), the

only feasible geometry is, in contrast, geometry 3 in Figure 7, since it is the only one with the degree

distribution of g in which k̄Nl
= 1. By similar arguments, Gj(g) = {2, 3}. ■

Example B (Lemma A). Assume N̄ = {i}.

(a) Consider network g4 in Figure 8. Since there is no pair of automorphically equivalent nodes

in N \ {i}, each permutation of the labels of the nodes in N \ {i} gives rise to a different

network. Therefore, Stabi(g4) = {f}, where f(i) = i ∀i, and |Stabi(g4)| = 1. Hence, y(g4 |

{i}) = (n−1)!
1 = 120. Similarly, y(g5 | {i}) = 120.

(b) Consider now g2 in Figure 8. Since m ≡ r and l ≡ o, |Stabi(g2)| = 2, as shown in Figure 2.

Therefore, y(g2 | {i}) = (n−1)!
2 = 60. Analogously, y(g1 | {i}) = y(g6 | {i}) = 60.

(c) As for network g3 in Figure 8, Stabi(g3) = {f, f ′, f ′′, f ′′′}, resulting in g3, g′3, g′′3 and g′′′3 in

Figure 3, respectively. Since |Stabi(g3)| = 4, y(g3 | {i}) = n−1!
2 = 30. ■

Example C (Proposition 1 ) Consider the information structure in Example 1, with ki(g) = 1.

By Lemma A (in Section A of this Appendix), there are y
(
g1 | {i}

)
feasible networks according to

i’s beliefs in which i occupies position oi(g1). Thus:
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b1i (g) = y
(
g1 | {i}

)
+ y
(
g4 | {i}

)
= 60 + 120 =

(n− 1)! n1
i (g)

|Aut(g1)|
=

5! 3

2
= 180.

b2i (g) = y
(
g2 | {i}

)
+ y
(
g5 | {i}

)
= 60 + 120 =

(n− 1)! n2
i (g)

|Aut(g2)|
=

5! 3

2
= 180.

b3i (g) = y
(
g3 | {i}

)
+ y
(
g6 | {i}

)
= 30 + 60 =

(n− 1)! n3
i (g)

|Aut(g3)|
=

5! 3

4
= 90.

Since |Aut(g1)| = |Aut(g2)| = 2 and |Aut(g3)| = 4 , ρ1i = 1

1+
|Aut(g1)|
|Aut(g2)|

+
|Aut(g1)|
|Aut(g3)|

=
b1i (g)
bi(g)

=

180
180+180+90 = 0.4 = ρ2i and ρ3i = 0.2. ■

Example D (Proposition 3 ). Consider the belief structure in Example 1, where Gi(g) = {1, 2, 3}

is represented in Figure 7 and gz has geometry z ∈ {1, 2, 3}. According to Proposition 1, ρ1i = ρ2i =
2
5

and ρ3i = 1
5 , since |Aut(g1)| = |Aut(g2)| = 2 and |Aut(g3)| = 4. Consider agent i (with ki(g) = 1).

Conditional on geometry 1, there are two nodes that represent a feasible position of i and are linked

to a degree-three node (depicted in yellow in Figure 7 (1)). Therefore, n1
i

(
g | tki

)
= n1

i

(
g | (3)

)
= 2.

Similarly, n2
i

(
g | (3)

)
= n3

i

(
g | (3)

)
= 1. Then, the probability that i has a degree-three neighbor is:

pi
[
tNi(g) = (3)

]
=

n1
i

(
g | (3)

)
n1
i (g)

ρ2i +
n2
i

(
g | (3)

)
n2
i (g)

ρ2i +
n3
i

(
g | (3)

)
n3
i (g)

ρ2i =
2

3
∗ 2

5
+

1

3
∗ 2

5
+

1

3
∗ 1

5
=

7

15
.

■
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