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Abstract

This paper develops an econometric framework that bridges the structural and
reduced-form literatures by translating the quantitative trade concept of market ac-
cess into a tool for causal estimation of general-equilibrium effects on local labor mar-
kets. Guided by a multi-region, multi-sector model, we compute region–sector market
access that embeds domestic input–output and competition linkages, estimate how it
responds to Bartik-style trade shocks, and aggregate the resulting effects across regions
and sectors using observed spatial links. Applying this framework to the China Shock,
we quantify changes in market access across 722 U.S. commuting zones and 22 sectors,
estimating domestic trade costs via infrastructure networks (rail, road, waterways, and
air). Accounting for these spillovers reduces the estimated contraction in manufacturing
employment by about 60% relative to partial-equilibrium estimates. While upstream
contractions amplify the shock, reduced domestic competition redirects demand toward
less-affected regions, where producers expand. By embedding general-equilibrium trade
theory into a tractable econometric design, this framework offers a new tool for assessing
the local labor-market effects of globalization.
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1 Introduction

Over the past three decades, globalization and technological change have profoundly reshaped local

labor markets in advanced economies. In the United States, for example, manufacturing employ-

ment declined from 14% to 8% of total employment between 1990 and 2010 (Autor et al., 2013). A

large literature attributes this contraction to automation, offshoring, and trade integration.1 Early

empirical work on trade shocks relied on reduced-form, partial-equilibrium analyses, overlooking the

general-equilibrium and spatial adjustments that propagate shocks across sectors and regions (e.g.,

Autor et al., 2013; Acemoglu et al., 2016; Pierce and Schott, 2016). To overcome these limitations,

quantitative trade simulations managed to capture general-equilibrium effects (e.g., Caliendo et al.,

2019; Adao et al., 2019), but they depend on strong assumptions and are not directly comparable

to reduced-form estimates.

This paper develops an econometric framework that recovers the general-equilibrium effects

of international trade shocks on local labor markets, bridging reduced-form and quantitative ap-

proaches. The framework highlights two key domestic propagation channels, the input–output

linkages and spatial competition, that jointly determine how foreign shocks reshape regional em-

ployment and wages. Guided by a multi-region, multi-sector model, we compute region–sector

market access, estimate its econometric response to Bartik-style trade shocks, and aggregate the

resulting effects across regions and sectors using observed input–output and trade linkages. The

method requires fewer structural assumptions than quantitative simulations and yields estimates

directly comparable to reduced-form regressions, allowing us to measure the relative magnitude of

general-equilibrium effects.

We apply this framework to the China Shock, quantifying changes in market access for 722

U.S. commuting zones and 22 sectors by estimating domestic trade costs using U.S. infrastructure

networks (rail, road, waterways, and air) and a least-cost path algorithm. Accounting for these

spillovers reduces the estimated contraction in manufacturing employment by roughly 60 percent

relative to partial-equilibrium estimates. While upstream contractions amplify local losses through

input-output linkages, reduced domestic competition redirects demand toward less-affected regions,

where producers expand.

We begin by deriving a measure of market access from the stationary version of Caliendo et al.

(2019), which provides region-sector granularity and incorporates input-output and trade link-

ages. The measure is defined at the labor market level, where a labor market corresponds to a

region–sector pair, and consists of two components. The first captures input-ouput spillovers: a

labor market’s market access increases with the market access of its suppliers, particularly when it

1For a review of manufacturing employment trends and their determinants, see Fort et al. (2018); for evidence on
automation, see Graetz and Michaels (2017); Acemoglu and Restrepo (2020); and for offshoring, see Boehm et al.
(2020).
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sources heavily from them, as reflected in input–output linkages. Intuitively, as suppliers gain mar-

ket access, their production costs decline, benefiting downstream customers. The second component

captures spatial-competition and demand spillovers: a labor market’s market access increases with

the expenditure capacity of its consumers and decreases with the market access of its competitors.

These effects are stronger for more central labor markets, as captured by bilateral iceberg trade

costs. As competitors gain market access, their production costs fall, enabling them to capture

larger market shares, whereas higher expenditure capacity in connected markets benefits the labor

market by expanding potential demand. We then isolate local shocks in market access from for-

eign fundamentals and trace their propagation across regions via domestic trade and input-output

linkages, demonstrating that employment responses to trade shocks are fully summarized by this

measure of market access.

Building on this structural framework, we next show how to implement it empirically. Under

suitable assumptions, shocks to foreign fundamentals can be expressed in a Bartik-style form. We

then estimate a regression of market access on this Bartik trade shock to identify local general-

equilibrium effects for each labor market. Following the model, we account for spatial spillovers

by aggregating the predicted responses of other regions and sectors using observed domestic in-

put–output tables and export shares. This procedure yields a general-equilibrium measure of the

shock, which we refer to as the global response. Finally, we exploit the structural link between

employment and market access to estimate our main equation, relating changes in employment to

the global response. Econometrically, the estimated coefficient decomposes into three components:

(i) the local general-equilibrium effect of the shock, (ii) the spatial propagation effect, capturing

how the shock diffuses through input–output and trade linkages, and (iii) the partial-equilibrium

benchmark, representing the direct effect of the Bartik shock on employment. The standardized

coefficient thus measures the impact of a one–standard-deviation increase in import penetration

after accounting for domestic propagation, making it directly comparable to the partial-equilibrium

benchmark.

We then apply this econometric framework to the China Shock. We numerically compute

market access for 722 commuting zones and 22 sectors for the years 2000 and 2007, focusing on

the period just before and after China’s accession to the WTO. These changes captures the general

equilibrium adjustments to all shocks affecting U.S. local labor markets during this period. To

quantify market access, we estimate domestic sectoral iceberg trade costs. We micro-found these

trade costs adapting the methodology of Allen and Arkolakis (2014). We first compute least cost

path using the Fast Marching Method on infrastructure networks, which covers air, railroads,

waterways, and highways, for 2000 and 2007. We then map least cost paths to sectoral geographic

and non-geographic trade costs with a discrete choice framework. The regression of market access

on exogenous import exposure reveals a strong and robust negative relationship. A one–standard-
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deviation increase in import exposure (≈ USD 430 per worker) reduces market access by 107 units,

compared to an average increase of 71 units across U.S. labor markets between 2000 and 2007. This

reduction reflects a general-equilibrium effect: although cheaper Chinese imports lower prices for

the varieties they displace, import-driven contractions among domestic producers reduce supply and

raise prices of other goods in the consumption basket, resulting in a net increase in the aggregate

price index.

We then propagate the regression-based projections of market access on import exposure through

domestic trade and production linkages to construct the global response. As a benchmark, we first

estimate the partial-equilibrium effect of the China shock on manufacturing employment across

12 sectors and 722 U.S. commuting zones. Our estimates closely align with Autor et al. (2013),

both with and without controls: a one–standard-deviation increase in decadal Chinese import

exposure per worker reduces a CZ-sector’s manufacturing employment-to-working-age population

ratio by about 0.33 percentage points. Turning to the global response, which incorporates full

general-equilibrium adjustments including spatial spillovers, the same increase in import exposure

propagated across space leads to a substantially smaller decline of about 0.13 percentage points.

This attenuation arises from the spatial propagation effect.

To understand the positive sign of the spatial propagation effect, we decompose it into two

components: the input–output channel and the spatial competition channel. The input–output

term is negative, amplifying the China Shock.2 When upstream suppliers contract in response

to Chinese import competition, downstream customers face input shortages or higher prices, as

cheaper Chinese intermediates do not fully offset the loss of domestic supply. By contrast, the

spatial competition term is positive, attenuating the global effect: when competitors in other labor

markets contract and Chinese imports fail to fully replace the lost output, local producers absorb

the residual demand, partially offsetting the direct negative impact of the China Shock.

Turning to the pooled sample of manufacturing and services, we find that a one–standard-

deviation increase in import penetration reduces employment by 0.16 percentage points. The

larger effect relative to the manufacturing sample reflects the role of input–output linkages, which

transmit contractions from manufacturing into the ten service sectors that source inputs from it.

In the paper, we further explore heterogeneity by worker demographics—education, age, gender,

and origin—across both manufacturing and services.

This paper is most closely related to the empirical literature on the China Shock and its effects

on the U.S. economy (Autor et al., 2013; Acemoglu et al., 2016; Pierce and Schott, 2016; Adao et al.,

2019).3 Our main contribution is to develop a granular empirical strategy that quantifies general

2This result is consistent with Acemoglu et al. (2016) and Pierce and Schott (2016), who document national-level
negative effects of upstream input–output linkages on manufacturing and non-manufacturing employment, though
Caliendo et al. (2019) find contrasting results in a quantitative analysis.

3More broadly, our paper contributes to the literature on how local labor markets respond to trade shocks, building
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equilibrium effects relative to partial equilibrium benchmarks. We benchmark our analysis against

Autor et al. (2013), who estimate the partial-equilibrium impact of rising Chinese import compe-

tition on manufacturing employment across 722 commuting zones. Using their Bartik instrument,

we estimate these effects at a finer level—across 12 manufacturing sectors within each commuting

zone—finding similar results in both sign and magnitude. We then show that incorporating general

equilibrium adjustments reduces the negative effects of the China Shock by a factor of 2.5.

While Acemoglu et al. (2016) and Pierce and Schott (2016) emphasize amplification of industry-

level shock through input-output linkages, we explicitly model spatial propagation through domestic

production and trade linkages across commuting and sectors, guided by a quantitative trade model.

This allows us to capture additional margins, including adjustments in domestic spatial competition.

Adao et al. (2019) provide reduced-form evidence of spatial amplification using distance-weighted

exposure measures at the Commuting-zone level, but our framework accounts for both sectoral and

regional interactions, including input-output and spatial competition effects. Crucially, we show

that once these channels are incorporated at a granular level, the net negative employment effects

are substantially mitigated, highlighting the importance of rich general equilibrium spillovers in

assessing the full impact of globalization on local labor markets.

This article departs from the quantitative (simulation) literature that evaluates GE effects of

trade shocks via counterfactual experiments (Caliendo et al., 2019; Adao et al., 2019). Instead, we

develop an empirical strategy to estimate GE effects directly, enabling a transparent comparison

with partial-equilibrium estimates.4 While Caliendo et al. (2019) quantify heterogeneous short-run

(2000–2007) manufacturing contractions across U.S. states, our commuting-zone Ö sector analysis

works at a finer scale and links directly to the Bartik-style partial-equilibrium estimates prevalent

in the literature.

We also contribute to the literature on market access (Donaldson and Hornbeck, 2016; Allen

and Arkolakis, 2023; Redding and Venables, 2004) by deriving a new, more granular measure of

market access, quantified for 2000 and 2007 across U.S. commuting zones and sectors. Building on

Donaldson and Hornbeck (2016)’s methodology, we adopt a stationary version of the Caliendo et al.

(2019) framework to construct this measure. Unlike existing measures, our is both more granular

and uniquely integrates input-output and trade linkages, and we use it for the first time to trace

how trade shocks propagate through the economy, affecting wages and employment.5 Finally, this

on Bartik (1991) and Blanchard et al. (1992) and subsequent studies documenting heterogeneity in local outcomes
(Topalova, 2010; Autor et al., 2013; Kovak, 2013; Dauth et al., 2014; Dix-Carneiro and Kovak, 2017; Hakobyan and
McLaren, 2016; Yi et al., 2016).

4To our knowledge, no previous empirical approach has addressed general-equilibrium effects via market access,
largely due to methodological and data limitations, particularly the endogeneity of market access (Allen and Arkolakis,
2023).

5While prior studies analyze the relationship between market access and GDP at the country level (Redding and
Venables, 2004, Head and Mayer, 2011) or U.S. county-level wages (Hanson, 2005), they do not derive a formal
measure of market access. Similarly, Brülhart et al. (2012) examine the effects of improved market access—arising
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paper builds on the methodological advancements introduced in Allen and Arkolakis (2014). We

micro-found iceberg trade costs and adapt the fast-marching method to our setup, enabling the

estimation of these costs across four modes of transport at a more granular level.6

The remainder of the paper is organized as follows. Section 2 derives the market-access measure

and structural equations. Section 3 explains the empirical strategy used to implement the model.

Section 4 describes the data and the construction of CZ–sector–level employment, wages, and

market access, and details the steps used to quantify market access and estimate domestic sectoral

iceberg trade costs. Section 5.1 provides descriptive evidence on the newly constructed measures,

including the global response. Section 6 reports our main findings and robustness checks. Section

7 concludes.

2 Theoretical Framework

This section presents the theoretical framework guiding our empirical analysis. We first outline the

stationary version of the Caliendo et al. (2019) model and derive the theoretical measure of market

access (Subsection 2.1). Subsection 2.2 develops the structural equations linking changes in market

access to changes in wages and employment, and relates market access to the China Shock.

2.1 Theoretical Market Access

We build on the stationary version of Caliendo et al. (2019), which provides region–sector granu-

larity and explicitly incorporates input–output (I–O) and trade linkages—features essential to our

analysis of how trade shocks propagate through local labor markets. The economy consists of N

regions and J sectors, with nj denoting a specific region–sector market. In each nj, a continuum of

firms produces intermediate goods with Cobb–Douglas constant returns to scale technology, com-

bining three inputs: labor, capital, and materials sourced from all sectors. Sectoral productivity

follows a Fréchet distribution as in Eaton and Kortum (2002). Each market nj also produces a

final good, which is a CES composite of intermediates; they are either consumed by households or

used as inputs in intermediate good production, thereby generating I–O linkages. Intermediate va-

rieties are tradable across regions subject to iceberg trade costs, while final goods are non-tradable.

Households earn wages and consume final goods from all sectors. At equilibrium, goods, labor, and

structures markets clear under perfect competition.

from trade liberalization—on wages and employment using a location discrete-choice model in a spatial framework
à la Helpman (1998), but focus on Austria during the fall of the Iron Curtain without constructing a formal market
access measure.

6Additionally, we leverage Allen and Arkolakis (2023)’s gold medal error strategy to develop a model-based IV
that isolates exogenous variation in Market Access. This approach aligns with similar methodologies employed in
Monte et al. (2018), Allen et al. (2020), and Adao et al. (2019).
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Following Donaldson and Hornbeck (2016), we define Consumer Market Access (CMA) as the

inverse of the local price index. Intuitively, a lower price index implies that consumers face cheaper

goods, including transport costs, and thus enjoy greater access to other regions’ markets. The price

index in region–sector nj is

Pnj = Γnj

(
N∑
i=1

(xijknj,ij)
−θj (Aij)

θjγij

)− 1
θj

≡ Γnj (CMAnj)
− 1
θj , (2.1)

where

xij = Bij

[
(rij)

ξi (wij)
1−ξi

]γij J∏
k=1

(
P ik
)γij,ik

. (2.2)

Here, rij and wij denote capital and labor prices, P ik is the price of material inputs, knj,ij are

bilateral trade costs between region n and i in sector j, and Aij denotes fundamental productivity.

The parameter θj is the sector-specific productivity dispersion (also the trade elasticity), and Γnj

is a constant. The production function of intermediate varieties exhibit constant returns to scale:

the value-added share γij and input shares γij,ik satisfy
∑

k γij,ik = 1− γij . Finally, ξi is the share

of capital in value added, which is fixed in supply in each labor market.

The expenditure share of region n on good j produced in region i and the labor market clearing

condition for market nj are given by:

πnj,ij =
(xij knj,ij)

−θj (Aij)
θjγij∑N

m=1 (xmj knj,mj)
−θj (Amj)

θjγmj
(2.3)

wnj =
γnj (1− ξn)

Lnj

N∑
i=1

πij,njXij (2.4)

whereXij denotes total expenditure of region i on good j, and πij,njXij represents the corresponding

expenditure on goods produced in region n. Under symmetric bilateral trade costs, Firm Market

Access (FMA) is proportional to Consumer Market Access (CMA) up to a constant ρ > 0: MAnj =

FMAnj = ρCMAnj . Consequently, any change in fundamentals that reduces firms’ market access

will likewise lower consumers’ market access.7 Here, Firm Market Access (FMA) measures the

ability of firms in market nj to sell their output competitively across regions. Combining equations

7This proportionality is established in Donaldson and Hornbeck (2016) and discussed in Redding (2022). In a
broad class of quantitative spatial models, as long as bilateral trade costs are symmetric, FMA and CMA are strictly
proportional: the ease with which firms sell across markets mirrors that of consumers sourcing from them.
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(2.1), (2.3), and (2.4), we obtain our main measure of market access:

MAnj =
J∏

k=1

(Γnk)
−γnj,nkθj

(
MAnk

ρ

) γnj,nkθj
θk ·

N∑
i=1

(kij,nj)
−θj

(
MAij

ρ

)−1

Xij (2.5)

Proof. see appendix A.2.

where ϱ = ρ−1 ·
∏J

k=1 ρ
γnj,nkθj−αk

θk andMij ≡
[
γij(1−ξi)

∏J
k=1 (αk)

αk
]−1

. Equation (2.5) highlights

four distinct channels through which shocks affect market access. First, the I-O effect: market

access in sector j of region n rises with the market access of all the local sectors, as cheaper

intermediate inputs lower production costs. Second, the Competition effect: market access in nj

falls when competing region–sectors improve their market access, lowering their prices and diverting

demand away from nj. Third, the Consumption effect: the market access of nj increases with the

expenditure capacity of nearby regions. Fourth, Centrality / trade-cost effect: the market access of

nj decreases with bilateral trade costs kij,nj . Higher trade costs increase the price of nj products,

reducing competitiveness and raising the price index, which worsens consumer welfare. Also, how

much the twin effects of the destination markets ij - competition effect and consumption effect -

will affect market nj depends upon the inverse of the trade cost between ij and nj.

There are two key differences between our measure of market access and the standard formu-

lation in the literature, as shown in the market access in Allen and Arkolakis (2023) (MAi =∑
j Tij

Yj
MAj

). First, our measure is defined at the region–sector level, whereas the literature typi-

cally adopts a region-level measure. This greater granularity allows us to capture a more localized

affect of a trade shock. Second, our measure incorporates an additional term (highlighted in green

in equation 2.5) that captures inter-sectoral linkages. This extension enables us to distinguish labor

market effects operating through cross-sectoral linkages from those operating through inter-regional

trade linkages.

2.2 Structural equations

We now establish the link between market access and labor demand. Combining the price index

(2.1), the expenditure share (2.3), and the labor market clearing condition (2.4), we derive the

following relationship between wages and market access:

(wnj)
1+θjγnj = κ1

(Hnj)
θjγnjξn(Anj)

θjγnj

(Lnj)1+θjγnjξn
·MAnj . (2.6)

Proof. see appendix A.1.

where κ1 ≡ γnjξn (Bnj)
θj is a constant. The wage in region-sector nj is increasing in its own market

access. Log-differentiating equations (2.6), (2.5), and defining x̂ ≡ ∆ log x = ∆x
x , we obtain the
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labor demand equation:

ŵnj =
θjγnj

1 + θjγnj
Ânj −

1 + θjγnjξnj
1 + θjγnj

L̂nj +
1

1 + θjγnj
M̂Anj (2.7)

M̂Anj =
J∑

k=1

γnj,nkθj
θk

M̂Ank︸ ︷︷ ︸
Input-Ouput

+
N∑
i=1

αij,nj

(
X̂ij − M̂Aij − θj k̂ij,nj

)
︸ ︷︷ ︸

Spatial Competition & Demand

(2.8)

Proof. see appendix A.1 and A.3.

where αij,nj ≡ πij,njXij∑
l πlj,njXlj

denotes the share of shipments in sector j produced in region n and sold

to region i, relative to total shipments of sector j produced in n (i.e., exports from n to i relative to

all exports from n). Equation (2.7) represents the labor demand schedule, which implies a negative

relationship between wages and labor demand, and includes both local and global shifters. The

change in the fundamental productivity term Ânj shifts the labor demand curve outward, as workers

in market nj become more productive. However, this is a local shifter, since higher productivity

in market nj affects only the demand for labor in that specific market. In contrast, changes in

market access act as a global shifter: an increase in market access raises labor demand through

sectoral and regional interlinkages within the economy. The Input–Output term in equation (2.8)

corresponds to the green term in equation (2.5), while the spatial competition and demand effects

correspond to the competition, centrality, and consumption components in equation (2.5). Hence,

changes in market access shift labor demand not only through local mechanisms but also through

global spillovers from connected labor markets. Using equations (2.7) and (2.8), the labor demand

in region n and sector j can be written as:

L̂nj = − 1 + θjγnj
1 + θjγnjξn

ŵnj +
θjγnj

1 + θjγnjξn
Ânj +

1

1 + θjγnjξn
M̂Anj (2.9)

Equation (2.9) and (2.8) show that an aggregate shock affect employment through changes in

market access. These effects operate both directly, within the region-sector, and indirectly, via

inter-regional and inter-sectoral spillovers. In the model, the elasticity of employment in sector

j and region n with respect to market access is decreasing in the share of immobile structures

ξn, in the trade elasticity θj , and in the sector’s value-added share γnj . Intuitively, market access

expands the effective market for local firms, raising labor demand, but this effect is dampened when

production is constrained by fixed structures, larger value added share, or higher trade sensitivity.

Overall, this elasticity summarizes how sectoral structure, trade responsiveness, and frictions jointly

shape labor adjustments to exogenous changes in market access. When either ξn = 0 or γnj = 0

the elasticity equals one, reflecting full adjustment of employment to market access in the absence
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of fixed assets.8

At last, we derive how a direct trade shock affects market access in each region–sector. To

do so, we temporarily abstract from spatial linkages and solve equation (2.8) such that only the

market access of region nj responds to the Chinese import shock.9 The resulting expression is:

M̂Anj =
1

c
′
nj

αCj,nj

(
X̂Cj − M̂ACj,mj − θj k̂Cj,nj

)
︸ ︷︷ ︸

Chinese Import Shock

+ αnj,nj

(
X̂nj − θj k̂nj,nj

)
︸ ︷︷ ︸
Change in Home Consumption

(2.10)

Proof. see appendix A.4.

where the subscript C refers to China, and c
′
nj is a constant.

3 From Theory to Empirics

We now describe the construction of our global response measure of the China Shock and specify the

estimating equations. First, we predict changes in labor markets’ Import Penetration per Worker

(IMW) from China to the U.S. using changes in imports from China to other developed countries,

computing Autor et al. (2013)’s measure at the region-sector level:10 The estimating equation is

∆IMWUS
nj = η1 ·∆IMWOther

nj + ϵnj (3.1)

where IMWUS
nj denotes Chinese imports to the U.S. per worker, and IMWOther

nj is the instrumental

variable based on imports to other developed countries, as detailed in Section 4. This captures

the effect that has been well known in the literature at the level of the commuting zone. Since

our objective is to capture how labor demand shifts effect employment through movements in the

market access - as theoretically shown in the previous section - we will estimate the link between the

china shock and market access first. After imposing the assumption of constant trade imbalances

8The final change in the employment level will depend upon the shape of labor supply curve. If the supply curve
is flat, then any increase in market access which shifts the labor demand curve outward will one to one translate into
higher employment. This would happen if the labor is perfectly mobile across sectors and regions (indicating wage
equalization). If however the labor supply curve is upward sloping, then an outward shift in labor demand curve
will not entirely translate to an increase in employment. Rather some of it will be arrested by wage increase. In the
extreme case of inelastic aggregate labor supply for a given market nj, all the shift will be absorbed by wages and no
change in employment. In Caliendo et al. (2019), the model dynamics introduced via frictional labor market results
in an upward sloping labor supply. In our paper, we will empirically measure how much actual employment response
to shifts in market access induced by the China shock.

9We adapt the methodology from the Online Theory Appendix of Autor et al. (2013) to our market-access
framework. While Autor et al. (2013) focus on the price index, we instead use its inverse—market access.

10Note that Autor et al. (2013) run regression at the CZ level for the aggregate manufacturing sector and hence
an additional subscript j will appear in all our regressions indicating sector for each commuting zone.
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and constant export margins,11 equation (2.10) results in the following estimating equation:

∆MAnj = γ1 · ∆̂IMWnj + ϵnj (3.2)

where ∆̂IMWnj ≡ η̂1∆IMWOther
nj are the predicted values from equation (3.1). The predicted

change in market access in equation (3.2), ∆̂MAnj , captures only the local effect of the trade

shock. However, the total change in demand in a local labor market also reflects regional and

sectoral spillovers. To account for these spillovers, we incorporate (i) spatial linkages across re-

gions—through domestic trade connections—and (ii) input–output linkages across sectors, through

production interdependencies. Using the expression for changes in market access from equa-

tion (2.8), we structurally capture the indirect effects on region n and sector j arising from

changes in market access in all other regions and sectors. The resulting Global Response (GR) vari-

able—constructed under the assumption of constant export margins and domestic trade costs—is

therefore:

GRnj =

J∑
k

γnj,nkθj
θk

∆̂MAnk︸ ︷︷ ︸
≡IOnj

Input-Output term
Same region, other sectors

−
N∑
i

αij,nj∆̂MAij︸ ︷︷ ︸
≡SCnj

Spatial Competition term
Other Regions, same sector

(3.3)

where ∆̂MAnk ≡ γ̂1∆̂IMWnk and ∆̂MAij ≡ γ̂1∆̂IMW ij are the predicted changes in market

access from equation (3.2). The constructed global response term in equation (3.3) for region n

and sector j depends positively on the change in market access summed across all other sectors

that provide material inputs (IOnj term). This positive relation reflects that lower input prices

in upstream sectors reduce the production costs in sector j, weighted by the input shares in the

production function (γnj,nk). The second term captures the competition effect within the same

sector j. When market access in other regions for sector j increases, it intensifies competition,

which reduces domestic labor demand in that sector. This effect is weighted by the share of region

n’s exports going to region i relative to total exports from n (αij,nj). Consequently, if region i

represents a large share of region n’s exports, any changes in market access in region i have a

greater impact on region n’s sales.

We distinguish between the following three estimating equations, which together with equa-

tion 3.2 allow us to derive the general equilibrium (GE) effect of the China Shock:

Partial Equilibrium (PE): ∆Lnj = δ1 · ∆̂IMWnj + δ2X
′
nj + ϵnj (3.4)

11Here again we adapt the methodology in the Online Theory Appendix of Autor et al. (2013) to our Market Access
environment.

11



GE without spillovers: ∆Lnj = ϕ1 · ∆̂MAnj + ϕ2X
′
nj + ϵnj (3.5)

GE with spillovers: ∆Lnj = β1 ·GRnj + β2X
′
nj + ϵnj (3.6)

The first equation (3.4) estimates the partial equilibrium effect of the China Shock, with δ1 captur-

ing the reduced-form impact—equivalent to the approach of ADH, but at a more granular level.12

The partial equilibrium effect captures changes in employment directly induced by the China Shock.

To move beyond these direct effects, we first estimate how the China Shock affects local market

access (equation 3.2). Since market access in a given market also influences connected regions and

sectors, we then estimate the resulting general equilibrium effects, including both local and spillover

impacts with equation (3.6).

Since market access is a sufficient statistics for equilibrium employment and wages, ϕ1 in equa-

tion (3.5) reflects the local GE effect (i.e., the effect of changes in local goods and factor market

prices) of the China Shock. It is however only local as we are not yet accounting for the spatial

propagation of the shock. The vector X ′
nj contains a rich set of controls for CZs-sector’s start-of-

decade labor force and demographic composition that might independently affect manufacturing

employment. Standard errors are clustered at the state level to account for spatial correlations

across CZ.

Coefficient Interpretation: PE vs. Local GE Past studies have focused on estimating

variants of equation (3.4) which captures the partial-equilibrium effect of import competition on

local employment (δ1). As a first step in capturing the general equilibrium effect, Equation (3.5)

estimates the local GE effect ϕ1, i.e., the employment response to the China shock but before spatial

spillovers. In Appendix A.5 we show the econometric link between the local general equilibrium

effect and partial equilibrium effect -

ϕ1 =
δ1
γ1
, (3.7)

where γ1 is the first-stage coefficient relating the import shock to market access (equation 3.2).

This ratio corresponds to the standard indirect least squares (ILS) representation of 2SLS with a

single instrument—the reduced-form effect divided by the first-stage effect—which holds even in

the presence of co-variates (Angrist and Pischke, 2009, Chapter 4, fn. 6).

Proposition 1. Once the regressors are standardized, the absolute value of the magnitudes of the

reduced-form and 2SLS coefficients are identical : δstd1 = ϕstd1 .

Proof. See Appendix A.5

Economically, ϕ1 measures the employment response per unit of market access induced by the

shock, rather than per unit of import penetration. The equality in equation (3.7) implies that ϕ1

12Commuting-zone × sector instead of Commuting zone only
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is mechanically determined by δ1 and γ1, though the latter two coefficients have distinct interpre-

tations - the first captures the effect of the china shock on employment and the second captures

the effect of the china shock on market access. Since both are driven by the same exogenous vari-

ation in Chinese exports, the choice of metric does not affect the substantive interpretation of the

standardized coefficients for PE and local GE effects.

Coefficient Interpretation: Local GE vs. GE with spillovers Equation (3.6) captures the

full general-equilibrium effect of the China shock, including both local adjustments and spatial

spillovers. The coefficient β1 therefore measures the employment response to the shock when (i)

local goods and factor prices adjust and (ii) spillovers from other regions and sectors are accounted

for. This global effect can be written as

β1 =
ϕ1 · SPE

δ1
, (3.8)

where it is a composition of SPE (Spatial Propagation Effect) which summarizes how exogenous

variation in imports elsewhere translates into local labor-market outcomes, local GE and PE effects.

Formally,

SPE ≡
Cov
(
∆Lnj , SPnj

)
Var
(
SPnj

) , SPnj ≡
J∑

k=1

γnj,nkθj
θk

∆̂IMWnk −
N∑
i=1

αij,nj∆̂IMW ij ,

and Appendix A.6 provides the derivation. Intuitively, SPnj aggregates direct and indirect exposure

to the China shock through input–output and trade linkages, while SPE measures the strength of

the transmission from that indirect exposure into local employment. Equation (3.8) highlights the

three-step ladder from partial equilibrium to global GE. The numerator, ϕ1 × SPE, captures the

local GE effect per unit of propagated exposure; dividing by δ1 provides a mechanical rescaling to

relate the global effect to the original partial-equilibrium exposure. Thus β1 equals the local GE

effect (market-access channel) amplified or attenuated by the spatial-propagation mechanism.

Finally, in standardized terms the scale differences drop out and the coefficients δstd1 and βstd1

are directly comparable:

βstd1 =
ϕ1 · SPE

δ1
· σGR =

= ± SPE · σSP |σ∆IM
(3.9)

since σGR =
∣∣∣ δ1ϕ1

∣∣∣ · σSP |σ∆IM
as shown in Appendix A.7. Hence βstd1 and the reduced-form analogue

δstd1 are directly comparable: the former measures the effect of a one–standard-deviation import

shock propagated across space on local employment, while the latter measures the non-propagated

localized partial e effect.
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4 Data and Variable Construction

The unit of analysis for the regressions is the 722 US commuting zones by 22 broad sectors. The

commuting zone boundaries are a cluster of counties created by Tolbert and Sizer (1996) based

on the commuting data in the 1990 census. We use the 722 of the 741 clusters which are used

in Autor et al. (2013). The 22 sectors are classified according to the North American Industry

Classification System (NAICS) which includes 12 tradable sectors and 10 non-tradable sectors as

used by Caliendo et al. (2019) (see Appendix C for the list of sectors included). We use the years

2000 and 2007 for the two periods in our analysis which allows us to study the market access and

labor market outcomes before and after China’s entry into WTO in the year 2002.

4.1 Labor Market Outcomes and the China Shock

The County Business Pattern 2000 reports employment by county and industry for 6-digit NAICS

codes and the distribution of firm sizes over 9 establishment size classes13. CBP is an annual data

series that provides information on employment, firm size distribution, and payroll by county and

industry. It covers all U.S. employment except self-employed individuals, employees of private

households, railroad employees, agricultural production employees, and most government employ-

ees. We impute employment by county by 4-digit SIC code using the procedure outlined in the

online appendix of Autor et al. (2013) (page 3-4). In order to map NAICS to SIC codes, we use a

weighted crosswalk based on the Census “bridge” file (available for download from David Dorn’s

webpage here). Our empirical analysis also uses data on changes in commuting zone’s population,

employment, and wage structure by education, age, and gender. Their measures are based on data

from the Census Integrated Public Use Micro Samples for the year 2000 and the American Com-

munity Survey (ACS) for 2006 through 200814. The 2000 Census samples include 5 percent of the

U.S. population while the pooled ACS for 2006 through 2008 uses 3 percent of the U.S. population

which we use for our measure of 2007. Our sample of workers consists of individuals who were

between age 16 and 64 and who were working in the year preceding the survey. Residents of insti-

tutional group quarters such as prisons and psychiatric institutions are dropped along with unpaid

family workers. Labor supply is measured by the product of weeks worked times usual number of

hours per week. For individuals with missing hours or weeks, labor supply weights are imputed

using the mean of workers in the same education-occupation cell, or, if the education-occupation

cell is empty, the mean of workers in the same education cell. All calculations are weighted by

the Census sampling weight multiplied with the labor supply weight. The computation of wages

excludes self-employed workers and individuals with missing wages, weeks or hours. Hourly wages

13Available at https://www.census.gov/programs-surveys/cbp.html
14Available at https://www.census.gov/programs-surveys/acs/microdata.html
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are computed as yearly wage and salary income divided by the product of weeks worked and usual

weekly hours. Top-coded yearly wages are multiplied by a factor of 1.5 and hourly wages are set not

to exceed this value divided by 50 weeks times 35 hours. Hourly wages below the first percentile of

the national hourly wage distribution are set to the value of the first percentile. Wages are inflated

to the year 2007 using the Personal Consumption Expenditure Index. We map these data to CZs

using the matching strategy that is described in detail in ?. We aggregate the corresponding county

and census data at the level of 722 commuting zones for each of the 22 sectors.

We construct the import shock as in Autor et al. (2013) except that our shock is at the sectoral

level. For that, we use the 3-digit SIC level trade flow between China and the US and aggregate it to

the 12 NAICS level industries. The import shock per worker (IMW) in sector j and commuting-zone

n thus constructed is represented as

∆IMWUS
nj =

Lnjt−1

Lujt−1

∆Mucjt

Lnt−1
(4.1)

where n is the commuting zone, j is the NAICS industry, Muc indicates imports from China to the

US. As in Autor et al. (2013), we instrument it using imports by other rich countries from China

such that

∆IMWOther
nj =

Lnjt−1

Lujt−1

∆Mocjt

Lnt−1
(4.2)

and we source the import data from Autor et al. (2013)’s paper.

4.2 Estimation of Trade costs

To quantify the theoretical measure of market access from equation (2.5), we solve the model in

levels, implying the knowledge of the trade costs parameter matrix, which is of N×N×J dimension

(with N = 722 being the total number of US CZs and J = 22 being the broad sectors). To reduce

computational issues, we micro-found the geographic component following Allen and Arkolakis

(2014). We use the highway, railroad and waterway networks for the years 2000 and 2010.15 To

run gravity regressions at the CZ-sector by mode to estimate region-sector trade costs, we use the

Commodity Flow Survey (CFS), which offer bilateral trade flows across CFS areas. However, the

CFS does not provide information on trade flow data at the CZ-sectoral level by mode of transport

(train, air, boat, truck). To overcome this issue, and after mapping CFS to CZ, we approximate

the share by mode of each CZ with the one for the US, keeping it constant across CZs.16

We briefly outline the procedure used to estimate sectoral iceberg trade costs here, while Ap-

15We use infrastructure data from 2010 because data for 2007 are not available. Furthermore, since the waterway
network remained essentially unchanged between 2000 and 2010, we also use the 2010 data for the year 2000 in order
to account for ports in both years.

16To test how strong this assumption is, we plan to aggregate estimated sectoral flows of each CZ by sector and
compare them to the CZ flows by mode available in the CFS data.
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pendix B provides additional details and compares our estimates to the aggregate estimates in Allen

and Arkolakis (2014). First, we create PNG images of the infrastructure networks of the US for

the years 2000 and 2010.17 For the year 2000, we use the infrastructure network images created by

Allen and Arkolakis (2014). They estimate trade costs using the railroad, highway, and waterway

networks, to which we add ports. We create our own images for the year 2010 (see images B.1a

and B.1b). The image size is 1452× 99118 pixels.

Second, we estimate the bilateral trade costs function kij,nj corresponding to equation (B.2)

in Appendix B.2. To do so, we first estimate the bilateral mode-specific distance dm(i, j) using

the FMM algorithm.19 We upload the geographic coordinates of the centroid of US CZs. We then

convert the longitude and latitude of the network images to coordinates of the pixels to overlap

the centroid and infrastructure network images. Then, we estimate the cost via each mode of

travel from every origin to every destination, which we refer to as the normalized mode-specific

distance dm(i, j). To do so, we assign an instantaneous cost function τm to each mode m. This

involves assigning a relative speed value to each transport mode, so that a pixel containing a specific

infrastructure will have a specific instantaneous trade cost (see details in appendix). Second, we

apply the FMM algorithm for any origin-destination pair to compute the normalized mode-specific

distance dm(i, j), which consists of the sum of instantaneous trade costs along the shortest path

between i and j across different modes of transport. It is normalized since we assume that the

width of the US in a straight line is equal to one using mode m.

Using estimates of mode-specific bilateral distances, we determine the relative cost of trade

across different modes of transport by sector, and compute the average sectoral geographic iceberg

trade costs, kij,njg , incurred when shipping goods from region i to region j, based on the discrete

choice framework developed in Allen and Arkolakis (2014) which we apply to each sector. We then

define total iceberg trade costs, kij,nj , as the sum of geographic trade costs (kij,njg )—estimated

using infrastructure networks—and non-geographic trade costs (kij,njg ), such as linguistic or ethnic

similarity. To estimate the sectoral shape parameters in equation (B.2), we employ a gravity model

using CFS trade flow data from 2007. Due to data availability, we use this to estimate trade costs

for both the year 2000 and 2010. This allows us to estimate total iceberg trade costs, kij,nj , for

both 2000 and 2007.

Appendix B provides plots of our estimated trade costs and the sectoral shape parameters, as

well as kernel density estimates of kij,nj , which we use to compute market access in the next section

4.3.

17Despite CFS flows are for 2007, we take infratructures from 2010 as they are not available for year 2007.
18Allen and Arkolakis (2014) use pixel images of size 1032× 760.
19Allen and Arkolakis (2014) provides a code which we modify to fit our analysis. While they compute trade costs

at the county level for the year 2000, we estimate them at the CZ-sector level for the years 2000 and 2010.
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4.3 Estimation of Market Access

Having the estimates of the trade costs, we can construct market access using equation 2.5, reported

here for simplicity

MAnj =
J∏

k=1

(Γnk)
−γnj,nkθj

(
MAnk

ρ

) γnj,nkθj
θk ×

N∑
i=1

(kij,nj)
−θj

(
MAij

ρ

)−1

Xij

which require information on trade costs (kij,nj) and sectoral expenditures Xij =
wijLij

γij(1−ξi)
which

we compute using wage earnings. The parameters we need are the trade elasticity (θk) which we

take from Caliendo et al. (2019), the share of value added in gross output (γnj), material input

shares (γnj,nk) which is constructed using data on value-added, gross output, and intermediate good

consumption from the US Input-Output tables. We have 722 x 22 equations for commuting zone

and sector combination and we use them to solve for 722 x 22 market access of each commuting

zone and sector. We start by solving non-linear set of equations using an iterative algorithm. After

we have parameterized the above equation for a given year (2000 or 2007), the algorithm starts

with an initial guess of market access (MAnj
0), which we set equal to observed wages. This initial

guess is then used to update the market access values in the subsequent iteration MAnj
1 such as

MAnj
1 =

J∏
k=1

(Γnk)
−γnj,nkθj

(
MAnk

0

ρ

) γnj,nkθj
θk

×
N∑
i=1

(kij,nj)
−θj

(
MAij

0

ρ

)−1

Xij

If the max distance between new MA and the old MA is close enough such that max(|MAnj
1 −

MAnj
0|) < tol where tol is set to 1e−5, we stop the iteration in the algorithm. However if this

inequality doesn’t hold, then the initial guess of market access (MAnj
0) is updated such that

MAnj
0 = MAnj

0 + ν(MAnj
1 −MAnj

0)

where ν is a small positive number which represent the step iteration parameter and we set it to

0.05. We gain convergence for the system of equations in under 150 iterations.

5 Descriptive Evidence

5.1 Spatial Representation of Market Access and the China Shock

We begin by analyzing our measure of Market Access estimated in Section 4.3. Panels (a) and

(b) of Figure 1 display the spatial distribution of U.S. commuting zones (CZs) in 2000 and 2007,

respectively. Although our measures are at the CZ–sector level, the figures show averages across
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sectors for each CZ. According to our estimates, CZs with the highest market access in 2000 are

concentrated along the West Coast, particularly in California, as well as in major metropolitan

areas on the East Coast such as New York and Florida. The Midwest, including metropolitan

areas like Chicago, also exhibits relatively high market access. A distinct geographic boundary

extends from San Antonio, Texas, to western Minnesota. Market access is relatively high to the

east of this line—including the Midwest—but decreases immediately to the west of it, before rising

again toward the West Coast, where California and other coastal areas reach peak market access.

Perhaps not surprisingly, Market Access in 2007 (Panel b) is visually highly correlated with Market

Access in 2000 (Panel a). Figure 2 confirms this persistence, with values closely aligned along the

black dashed 45-degree line. Notably, the estimated correlation slightly exceeds 1, indicating that

inequality in market access across CZs increased during this period.

Despite the strong persistence of market access over the period, Figure 3 maps the average

change in market access at the CZ level between 2000 and 2007. Since our data are at the CZ–sector

level, we first average market access changes across sectors within each CZ to construct this spatial

map. Red areas indicate CZs where market access contracted on average, while green areas show

expansions. Most commuting zones experienced an expansion in market access during this period,

with contractions concentrated primarily in the Midwest, Northeast, and South. Importantly, this

measure captures general equilibrium adjustments to the full range of shocks affecting U.S. labor

markets over the period, including the China Shock. As shown in panel (a) of Figure 4, the CZs

experiencing the largest contractions in market access correspond closely to those most directly

exposed to the China Shock. This maps show predicted exogenous changes in import penetration

per worker between 2000 and 2007, estimated from equation (3.1) and averaged across sectors at

the CZ level. The regions with the greatest market access contractions largely overlap with those

experiencing the highest import penetration increases, notably around the Rust Belt and the South.

However, this relationship is not one-to-one; some regions heavily exposed to import penetration

nonetheless saw expansions in market access over the period.

Panel (b) presents our estimated global response function to the China Shock from equation

(3.3). As detailed in Section 2, this global response isolates the overall change in market access

induced by the China Shock during the period. The figure shows that, on average, the general

equilibrium effect of the China Shock led to an expansion of market access across U.S. commuting

zones (CZs). However, this aggregate picture conceals important sectoral heterogeneity (see Panels

A and B in Table 1), where some sectors within CZs contract while others expand. Crucially,

although the China Shock induces an overall increase in China-Shock-induced changes in market

access (the global response), this does not necessarily translate into increased employment, as we

will show in the result Section 6.

Panels (a) and (b) of the figure 5 decompose the global response into its two components: the
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input-output (IO) and spatial competition (SC) effects, respectively. Table 1 shows that the IO

component is on average negative across the pooled sample, as well as in manufacturing and non-

manufacturing sectors. This indicates that IO linkages generate negative spillovers across regions,

contracting market access. This finding aligns with the downstream IO propagation mechanism:

when suppliers lose market access due to the China Shock, their goods become less competitive,

which in turn harms their customers. Figure (3.1) panel (a) illustrates that this negative trans-

mission is concentrated in regions directly affected by the shock, with pronounced effects in the

Rust Belt. Conversely, the spatial competition component in panel (b) is consistently positive on

average across commuting zones, suggesting that as domestic competitors lose market access due

to the China Shock, a given CZ experiences an expansion in its own market access. The Southern

U.S. benefits most from this channel.20 This preliminary analysis highlights that the global re-

sponse reflects the net effect of these two components, with the spatial competition effect generally

outweighing the negative IO spillovers. In Section 6, we further investigate whether these general

equilibrium expansions in market access correspond to contraction, mitigation, or expansion in

manufacturing, non-manufacturing, and aggregate employment at the sector–CZ level.

5.2 Market Access, Trade Costs, and Labor Market Outcomes

Table 3 summarizes market access across industries in the year 2000 and the change between

2000 and 2007, as estimated in Section 4.3. On average, industries in the manufacturing sector

have higher market access, whereas service-related industries have lower market access. This is

largely because manufacturing consists of tradable industries which, through regional trade links,

achieve substantially greater access to markets. By contrast, the non-tradability of most service

sector industries results in lower market access. Table 3 also reports the change in market access

across sectors between 2000 and 2007. For most manufacturing industries, market access contracts,

while it expands for most service-based industries. Textiles, Computers, Plastics, Wood, and

Machinery experience the largest contractions. Although these variations in market access are not

due solely to the China shock, it is worth noting that the goods most exposed to Chinese competition

include luggage, rubber and plastic footwear, games and toys, apparel, textiles, furniture, leather

goods, electrical appliances, and jewelry. Unsurprisingly, these goods belong to the three industries

that experienced the largest decrease in market access during the reference period. By contrast,

Education, Finance, Accommodation and Food, Health, and Wholesale Trade services expanded

the most in the service sector. Part of this expansion may reflect the relocation of workers displaced

by trade-related shocks. For instance, as shown in (Ferriere et al., 2018), households more exposed

20Note that the domestic competition component is identical for all CZs within the same state because it is
computed using state-level export shares from 2000. This approach averages exposure across input sectors with
identical weights, resulting in uniform exposure for sectors within CZs of the same state. An alternative would be to
use export shares from the CFS data, but these are only available for 2007, which introduces endogeneity concerns.
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to the China shock tend to spend additional years in college as the wage premium for high-skilled

jobs rises. Moreover, given the growing importance of trade (both domestic and international), it is

consistent that the largest expansion in market access is observed for the wholesale trade industry.

We next examine the correlations between our estimates of market access and the average trade

costs computed in Section 4.2. Columns 1 and 2 of Table 4 report the coefficients from a regression

of market access on average trade costs in each commuting zone. A negative coefficient confirms

that commuting zones with higher trade costs exhibit lower estimated market access. Equation 2.5

illustrates that when a region is farther from other regions (higher κ), its access to those markets

is limited, thereby lowering overall market access. Thus, more remote regions, characterized by

higher bilateral trade costs, experience reduced market access. These negative relationships hold

for both years in our analysis. Our estimated measure of market access is also correlated with

employment across commuting zones, indicating that our estimates are robustly associated with

labor market outcomes. Columns 3 and 4 of Table 4 report the correlations between market access

and employment. The positive coefficients suggest that commuting zones with larger labor markets

are also those with higher estimated market access. These relationships are consistent in both 2000

and 2007, reinforcing that our market access measure passes a basic validity check through positive

correlations with employment.

6 Results

In this section, we examine the empirical relationships among our key variables, focusing first on

12 manufacturing sectors across 722 U.S. commuting zones. We first document a strong negative

relationship between market access and exposure to the China shock. We then estimate the partial

equilibrium effect of the China shock on manufacturing employment as a benchmark, before turning

to our global response measure, which captures the full general equilibrium adjustment including

spatial spillovers. Finally, we explore heterogeneity in the effects by extending the analysis to the

pooled sample (manufacturing and services), the service sector alone, and worker characteristics.

6.1 Market Access and the China Shock

Before analyzing the relationship between market access and the China shock, we first establish the

validity of our instrument. Table 5 reports the relationship between U.S. imports from China and

Chinese exports to other developed economies using equation (3.1). The two series are strongly

correlated: an increase of about USD 350 in Chinese exports to other developed economies is

associated with a USD 432 increase in Chinese exports to the United States.

We then estimate the effect of the China shock on the market access of U.S. local labor mar-

kets. Specifically, we estimate equation (3.2) for 722 commuting zones across 12 tradable sectors,
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with results reported in Table 6. Column 1 presents the OLS estimate: a one–standard-deviation

increase in local exposure to Chinese imports (≈ USD 440 per worker) reduces market access by ap-

proximately 109 units. The IV results, reported in column 2, imply that a one–standard-deviation

increase in exogenous import exposure (≈ USD 430 per worker) leads to a 107-unit decline in

market access. To put this in perspective, the average change in market access across U.S. labor

markets between 2000 and 2007 was 71 units (SD = 483, see Table 1). A one–standard-deviation

increase in exposure to Chinese imports reduces market access by 107 units, exceeding the typical

change, highlighting a substantial first-order effect on local market access.

This decline in market access reflects a general-equilibrium effect. Although Chinese imports

lower the price of directly competing goods, the contraction of domestic suppliers raises prices for

other goods in the consumption basket, especially when imports and local varieties are imperfect

substitutes. Since market access is inversely related to the aggregate price index, the net effect of

import competition is an increase in local price indices, even though imported goods themselves

are less expensive.

6.2 The Partial vs. General Equilibrium Effect of the China Shock on

Manufacturing Employment

We begin with tradable industries directly affected by the China shock—the manufacturing sectors.

Column 1 of Table 7 reports the effect of the shock on the U.S. labor market (CZ-sector pair),

corresponding to the estimation of equation (3.4). A one–standard-deviation increase in exogenous

imports per worker (≈ USD 430) reduces the manufacturing employment share by 0.33 percentage

points. This magnitude is very similar to the estimates reported by Autor et al. (2013) at the

commuting-zone level.21

In column 2, we report the estimate of equation (3.5), which isolates the local GE effect ϕ1, i.e.,

the employment response to the China shock after local goods and factor prices adjust but before

spatial spillovers. Because Table 7 reports results using standardized regressors, the coefficients in

columns 1 and 2 have the same magnitude (see Section 3).22 A one–standard-deviation increase in

China-shock-induced changes in market access reduces employment by 0.33 percentage points. Since

a one–standard-deviation increase in Chinese imports per worker actually reduces market access by

roughly 103 units, even a positive coefficient on market access translates into a net contraction in

employment. In raw units, the non-standardized ϕ1 coefficient is 0.0032, implying that a one-unit

decrease in market access induced by the China shock reduces employment by 0.0032 percentage

points; multiplied by 103, this yields roughly 0.33. Economically, this does not imply that the

21In column 2 of their Table 2, ADH report a coefficient of 0.72 for a USD 1000 increase in Chinese imports
(2000–2007). Scaling to a USD 430 increase yields roughly 0.31 p.p., consistent with our estimate both with and
without controls.

22Unstandardized coefficients would, of course, differ in magnitude.
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partial-equilibrium and local general-equilibrium effects are identical: the similarity in magnitudes

is an artifact of how market-access changes are constructed and scaled. Conceptually, the local

GE effect captures the response to changes in market access per unit of exposure, not a direct

one-to-one mapping from imports to employment.

We next move to column 3, our main specification. As illustrated in equation 3.3, changes in

market access can propagate across labor markets through input–output linkages or trade linkages.

Hence, when we regress employment shares on the global response term, we capture both the partial

effect and the spatial propagation effect of the China shock. Accounting for spillovers, the effect on

employment shares falls by 2.5 times—from 0.33 p.p. (δ1) to 0.13 p.p. (βstd1 ). Since our coefficients

are standardized, the coefficient βstd1 estimated correspond to equation 3.9, that is, minus the spatial

propagation effect (SPE) multiplied by the standard deviation of the spatial propagation term.

The bottom panel of Table 7 reports the SPE. Under this specification, the employment decline

is substantially attenuated—by 0.13 percentage points. This suggests that, despite the strong

and negative direct effect of the shock, general equilibrium adjustments and spatial propagation

mitigate contractions in manufacturing employment shares. Overall, this reduces the employment

losses predicted in Autor et al., 2013 from 1.5 million to about 0.7 million.

6.3 Mechanism: Input–Output vs. Domestic Spatial Competition

To understand the mechanisms mitigating losses from the China shock, we decompose the global

response into two components: the input–output (I–O) effect and the trade spillover effect. Propa-

gation through I–O linkages occurs when upstream suppliers contract in response to rising Chinese

import competition, their downstream customers face higher prices or input shortages. Trade

spillovers operate differently: when firms in one commuting zone exit due to import competition,

demand shifts either to Chinese imports or to close domestic substitutes. With incomplete sub-

stitution toward Chinese goods, firms in less-exposed zones expand sales to replace lost output,

dampening aggregate employment losses.

We separate these channels empirically and report the standardized coefficients βstd1 in the top

panel of Table 8. Translating them into spatial propagation effects (bottom panel), we find that

trade spillovers mitigate manufacturing employment losses by 0.105 p.p., while I–O linkages exac-

erbate them by 0.107 p.p. The I–O result echoes Acemoglu et al. (2016), who show that upstream

linkages in particular amplified contractions, while downstream effects were ambiguous. Since the

aggregate spatial propagation effect is positive (Table 7), trade spillovers dominate I–O spillovers.

The similarity in magnitude across the two channels also points to potential nonlinearities: when a

labor market is simultaneously exposed through both channels, positive trade spillovers can offset

I–O–induced losses. For example, if firms face reduced demand for their inputs, they might expand

into other commuting zones affected by the China shock. This is feasible when inputs are com-
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bined in a Cobb–Douglas fashion (fixed proportions). However, if goods across commuting zones

have CES-type substitution elasticities, changes in relative prices alter consumption shares. Thus,

demand contraction due to I–O spillovers may be more than offset by demand expansion elsewhere.

Thus, demand contraction due to I–O spillovers may be more than offset by demand expansion

elsewhere.

6.4 Non-Tradable Sectors and Local Labor Markets

We now extend the analysis to service-sector industries to estimate their general equilibrium ef-

fects. In the service sector, the partial equilibrium effect (δ1) originates only indirectly, through

input–output linkages from manufacturing. Thus, in terms of the global response term in equation

3.3, we focus solely on the input–output component. We report βstd1 in the top panel of Table

D.7 and the spatial propagation effect in the bottom panel. We find that a one-standard-deviation

decline in the global response contracts employment shares in the service sector by 0.10 p.p. This

finding contrasts with the counterfactual predictions in Caliendo et al., 2019, which suggest I–O

linkages insulate against foreign productivity shocks. Instead, our results show they amplify em-

ployment losses. Pooling manufacturing and services (Table D.8 ), we find the spatial propagation

effect remains positive overall, as the employment gains from weakened spatial competition in

manufacturing outweigh the losses from I–O linkages.

We further examine heterogeneity by education, sex, nativity, and age demographics. Table

11 reports βstd1 and the spatial propagation effect for subsamples in manufacturing and services.

In columns 1–2 for manufacturing, the spatial propagation effect mitigates losses for non-college-

educated workers twice as much as for college-educated workers (0.05 p.p. vs. 0.024 p.p.). As

shown in Autor et al. (2013), non-college workers are more adversely affected initially, but some of

their losses are attenuated by weakened spatial competition.

When splitting by sex (columns 3–4), we find little difference: male and female workers expe-

rience similar mitigation (0.038 p.p. vs. 0.037 p.p.). Splitting by nativity (columns 5–6), however,

reveals large differences: natives see far greater mitigation than immigrants (0.06 p.p. vs. 0.007

p.p.). This is consistent with Autor et al., 2021, which shows that foreign-born workers were less

affected by the China shock initially, so mitigation through spatial linkages is concentrated among

natives.

Turning to the service sector, I–O linkages amplify losses. In columns 1–2 of the bottom panel

of Table 11, non-college-educated workers lose more than twice as much as college-educated workers

(0.23 p.p. vs. 0.22 p.p.). Downstream services face reduced demand when upstream manufacturing

contracts, and less-educated workers are most affected. Splitting by gender (columns 3–4), male

workers are hit 60% more than female workers, consistent with gender differences in wages found

in manufacturing (Autor et al., 2013, Table 6). Splitting by nativity (columns 5–6), natives are hit
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15 times more than immigrants.

Finally, in Table 12, we analyze heterogeneity by age. In manufacturing, differences are negli-

gible. In services, however, younger workers are affected almost three times more adversely than

older workers, underscoring the importance of experience in resilience to trade shocks.

7 Conclusion

This paper investigates the general equilibrium effects of international trade shocks on U.S. local

labor markets, with a focus on the China Shock and its impact on market access. By leveraging a

model-based measure of market access and constructing a novel instrumental variable to account

for exogenous variations in Chinese import exposure, we isolate the causal effect of market access

changes on sectoral employment and wages. Our results reveal that increases in market access,

driven by the China Shock, are positively associated with employment in manufacturing labor

markets and negatively in service labor markets.

The findings underscore the importance of considering general equilibrium effects when assessing

the impact of trade shocks. This research contributes to the growing literature on the labor market

consequences of globalization, highlighting the complex interplay between trade shocks, market

access, and local economic outcomes. Understanding these dynamics is crucial for policymakers

seeking to design effective labor market interventions that address the unequal distribution of the

benefits and costs of trade liberalization.
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A Theoretical appendix

A.1 Wages and Market Access

Starting from the equilibrium Labor Market Clearing (LMC) condition:

wnj =
γnj(1− ξn)

Lnj

N∑
i=1

πij,njXij , (A.1)

and using (2.3) along with the definition of CMA (2.1), we can write:

wnj =
γnj(1− ξn)

Lnj

N∑
i=1

(xnjkij,nj)
−θj (Anj)

θjγnj (CMAij)
−1Xij . (A.2)

Using the unit price equation (2.2), grouping the “nj” terms outside the sum, and taking wages

to the left-hand side with the definition of CMA, we obtain:

(wnj)
1+θjγnj(1−ξn) = κ1

(rnj)
−θjγnjξn(Anj)

θjγnj

Lnj

J∏
k=1

(Γnk)
−γnj,nkθj (CMAnk)

γnj,nkθj
θk

×
N∑
i=1

(kij,nj)
−θj (CMAij)

−1Xij ,

where κ1 ≡ γnj(1− ξn)(Bnj)
θj .

Substituting the structure price rnj =
ξn

1−ξn

wnjLnj
Hnj

, we obtain:

(wnj)
1+θjγnj =

κ1ξn
1− ξn

(Hnj)
θjγnjξn(Anj)

θjγnj

(Lnj)1+θjγnjξn

J∏
k=1

(Γnk)
−γnj,nkθj (CMAnk)

γnj,nkθj
θk

×
N∑
i=1

(kij,nj)
−θj (CMAij)

−1Xij .

The last two terms are defined as Firm Market Access (FMA):

FMAnj =
J∏

k=1

(Γnk)
−γnj,nkθj (CMAnk)

γnj,nkθj
θk︸ ︷︷ ︸

I-O effect

×
N∑
i=1

(kij,nj)
−θj (CMAij)

−1Xij︸ ︷︷ ︸
Competition effect

.

� FMA in region-sector nj is positively related to the CMA of all other sectors k in the same

region n (I-O effect): as prices of other sectors’ goods decrease, materials for producing good

j become cheaper.
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� FMA in region-sector nj is negatively related to the CMA of sector j in all other regions

(competition effect).

Substituting the definition of Market Access (MA, see Section A.2):

(wnj)
1+θjγnj =

κ1ξn
1− ξn

(Hnj)
θjγnjξn(Anj)

θjγnj

(Lnj)1+θjγnjξn
·MAnj . (A.3)

The wage in region-sector nj is increasing in its own market access. Given that structures are

fixed, taking logs and differentiating gives:

ŵnj =
θjγnj

1 + θjγnj
Ânj −

1 + θjγnjξn
1 + θjγnj

L̂nj +
1

1 + θjγnj
M̂Anj . (A.4)

Solving for employment:

L̂nj = − 1 + θjγnj
1 + θjγnjξn

ŵnj +
θjγnj

1 + θjγnjξn
Ânj +

1

1 + θjγnjξn
M̂Anj . (A.5)

A.2 Market Access (equation 2.5)

We derive Market Access MAnj = FMAnj = ρCMAnj .

MAnj = FMAnj

=
J∏

k=1

(Γnk)
−γnj,nkθj (CMAnk)

γnj,nkθj
θk ×

N∑
i=1

(kij,nj)
−θj (CMAij)

−1Xij

=

J∏
k=1

(Γnk)
−γnj,nkθj

(
MAnk

ρ

) γnj,nkθj
θk ×

N∑
i=1

(kij,nj)
−θj

(
MAij

ρ

)−1

Xij (A.6)

RecallXij =
wijLij

γij(1−ξi)
, use Cij =

wij
P i

, and recall that P i =
∏J

k=1

(
P ik

αk

)αk
=
∏J

k=1
(Γik)

αk(CMAik)
−αk
θk

(αk)
αk ,

we get:

MAnj =

(
J∏

k=1

(Γnk)
−γnj,nkθj (CMAnk)

γnj,nkθj
θk

)
×

N∑
i=1

(knj,ij)
−θj (CMAij)

−1 wijLij

γij(1− ξi)

=

(
J∏

k=1

(Γnk)
−γnj,nkθj (CMAnk)

γnj,nkθj
θk

)
×

N∑
i=1

(knj,ij)
−θj (CMAij)

−1 P iCijLij

γij(1− ξi)

=

(
J∏

k=1

(Γnk)
−γnj,nkθj (CMAnk)

γnj,nkθj
θk

)
×

N∑
i=1

(knj,ij)
−θj (CMAij)

−1
J∏

k=1

(
CMAik

)−αk
θk
CijLij

∏J
k=1 Γ

ik

γij(1− ξi)

=ϱ

(
J∏

k=1

(Γnk)
−γnj,nkθj (MAnk)

γnj,nkθj
θk

)
×

N∑
i=1

(
Mij

J∏
k=1

Γik

)
(knj,ij)

−θj CijLij (MAij)
−1

J∏
k=1

(
MAik

)−αk
θk

(A.7)
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where ϱ = ρ−1 ×
∏J

k=1 ρ
γnj,nkθj−αk

θk and Mij ≡ 1
γij(1−ξi)

∏J
k=1(αk)

αk
.

A.3 Log differentiation to obtain equation (2.8)

We start with equation (2.5) and proceed as follow:

MAnj =
J∏
k

(Γnk)

(
MAnk

ρ

) γnj,nkθj
θk

N∑
i

(kij,nj)
−θj

(
MAij

ρ

)−1

Xij

MAnj =
J∏

k=1

(Γnk)

(
MAnk

ρ

) γnj,nkθj
θk

N∑
i

(kij,nj)
−θj

(
MAij

ρ

)−1

Xij

We now take the log, and differentiate, to obtain (with x̂ = ∆log(x) = dx
x ):

M̂Anj =

J∑
k=1

γnj,nkθj
θk

M̂Ank +

N∑
i

(kij,nj)
−θj
(
MAij

ρ

)−1
Xij∑N

l (klj,nj)
−θj
(
MAlj

ρ

)−1
Xlj

(
X̂ij − M̂Aij − θj k̂ij,nj

)

M̂Anj =
J∑

k=1

γnj,nkθj
θk

M̂Ank +
N∑
i

αij,nj

(
X̂ij − M̂Aij − θj k̂ij,nj

)

where in line three we use the fact that , and the export share is αij,nj ≡ πij,njXij∑
l πlj,njXlj

. To go from line

3 to 4, we substitute in for MA
ρ = CMA =

∑N
i=1 (xij knj,ij)

−θj (Aij)
θjγij and multiply and divide

by the unit cost ((xnj)
−θj ) and productivity ((Anj)

−θjγij ) terms. This way we get the expenditure

shares (π) which when multiplied by the total expenditures X, gives us the export shares.

A.4 Market Access and China Shock (equation 2.10)

For sector j, the MA of region n can be directly related to the inverse price index through (see

(2.1)):

MAij = ρCMAij =
1

Γnj

(
N∑

m=1

(xmj kij,mj)
−θj (Amj)

θjγmj

)−θj

(A.8)

Log differentiating (A.8), we get:

M̂Aij =
∑
m

ϕij,mjΘ̂ij,mj (A.9)

where ϕij,mj ≡ πij,mjXij∑
l π
ij,ljXij

is the share of region i in purchase of good j produced in m and

Θ̂ij,mj ≡ (θjγmj)
(
−ξmr̂mj − (1− ξm) ŵmj + Âmj

)
− θj

∑J
k γmj,mkM̂A

mk
− L̂mj + θj k̂ij,mj is the
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log change in “export capability” of region-sector mj in market ij. The market access (or price

index) of market ij increases in the cost of production of mj (r̂mj , ŵmj ,
∑J

k γmj,mkM̂A
mk

) as

mj becomes less competitive, increases in demand of mj (L̂mj), decreases as mj becomes more

productive (Âmj) and more distant (k̂ij,mj). Substituting equation (A.9) in (2.8), and assuming

that the changes happen only in China and the CZs nj (as in the Theoretical Appendix of Autor

et al., 2013), we obtain:

(1− γnj,nj − αnj,nj)
(
M̂Anj

)
= ŜCj,nj + αnj,nj

(
X̂nj − θj k̂nj,nj

)
(A.10)

where Ŝ ≡ αCj,nj

(
X̂Cj −

∑
m ϕCj,mjΘ̂Cj,mj − θj k̂Cj,nj

)
is the China Shock.

A.5 Local GE Coefficient & Equivalence between Reduced and 2SLS

We show that, once standardized, the magnitudes of the reduced form and second-stage coefficients

are identical, while they can differ in sign. Consider the three equations in our framework:

First stage: ∆MAnj = γ1∆̂IMWnj + ϵnj

Second stage: ∆Lnj = ϕ1

(
γ1∆̂IMWnj

)
+ ϵnj

Reduced form: ∆Lnj = δ1∆̂IMWnj + ϵnj

The corresponding OLS coefficients are:

γ1 =
Cov

(
∆MAnj , ∆̂IMWnj

)
Var

(
∆̂IMWnj

) , δ1 =
Cov

(
∆Lnj , ∆̂IMWnj

)
Var

(
∆̂IMWnj

) , ϕ1 =
Cov

(
∆Lnj , γ1∆̂IMWnj

)
Var

(
γ1∆̂IMWnj

) .

Since γ1 is a scalar, we can rewrite ϕ1 as:

ϕ1 =
γ1Cov

(
∆Lnj , ∆̂IMWnj

)
γ21Var

(
∆̂IMWnj

) =
δ1
γ1
.

The variance of the fitted regressor in the second stage is:

σ2
γ1∆̂IMWnj

= Var
(
γ1∆̂IMWnj

)
= γ21 σ

2

∆̂IMWnj
.

Therefore, the standardized second-stage coefficient is:

ϕstd1 = ϕ1 · σγ1∆̂IMWnj
= ϕ1 · γ1 σ∆̂IMWnj
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= δ1 · σ∆̂IMWnj
,

which is exactly the standardized reduced-form coefficient δstd1 . Hence, the standardized reduced

form and second stages have the same magnitude. Back to Section 6.2.

A.6 Decomposition of the Global GE coefficient (equation 3.8)

To show the relationship between the different coefficients and the general equilibrium propagation

of the China Shock, I begin by reporting the relevant estimating equations:

∆MAnj = γ1∆̂IMWnj + ϵnj

∆Lnj = δ1∆̂IMWnj + ϵnj

∆Lnj = ϕ1

(
γ1∆̂IMWnj

)
+ ϵnj

∆Lnj = β1 GRnj + ϵnj

where ∆̂IMWnj is predicted from equation (3.1), and the regression coefficients are:

γ1 =
Cov

(
∆MAnj , ∆̂IMWnj

)
V ar

(
∆̂IMWnj

) , δ1 =
Cov

(
∆Lnj , ∆̂IMWnj

)
V ar

(
∆̂IMWnj

) ,

ϕ1 =
Cov

(
∆Lnj , γ1∆̂IMWnj

)
V ar

(
γ1∆̂IMWnj

) , β1 =
Cov (∆Lnj , GRnj)

V ar (GRnj)
.

It then follows that:

ϕ1 =
Cov

(
∆Lnj , γ1∆̂IMWnj

)
V ar

(
γ1∆̂IMWnj

) =
δ1
γ1
, (A.11)

where the second equality follows from the definition of δ1, using the fact that γ1 can be group out

of the covariance and variance terms. The partial effect is then equal to:

δ1︸︷︷︸
PE effect

= ϕ1︸︷︷︸
Local GE
effect

· γ1︸︷︷︸
China shock

onMA

(A.12)

Next, we substitute the predicted value ∆̂MAnj = γ1∆̂IMWnj from equation 3.2 into equa-
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tion (3.3). This yields:

GRnj =
J∑

k ̸=j

γnj,nkθj
θk

∆̂MAnk −
N∑
i̸=n

αij,nj∆̂MAij

= γ1 · SPnj ,

where

SPnj ≡
J∑
k

γnj,nkθj
θk

· ∆̂IMWnj −
N∑
i

αij,nj · ∆̂IMW ij (A.13)

is the Spatial Propagation (SP) of the China Shock. Finally, we derive:

β1 =
Cov (∆Lnj , GRnj)

V ar (GRnj)
=
Cov (∆Lnj , γ1SPnj)

V ar (γ1 · SPnj)
=
Cov (∆Lnj , SPnj)

γ1V ar (SPnj)
=
SPE

γ1
=
SPE · ϕ1

δ1
,

where

SPE ≡ Cov (∆Lnj , SPnj)

V ar(SPnj)

is the Spatial Propagation Effect.

A.7 Standard Deviation of the GR term (equation 3.9)

In this section, we prove that σGR = | δ1ϕ1
| · σSP · σ∆IM .

When we standardize the import shock, we shock by a standard deviation σ∆IM .

V ar(GRnj) = V ar

 J∑
k ̸=j

γnj,nkθj
θk

∆̂MAnk −
N∑
i̸=n

αij,nj∆̂MAij


= V ar

 J∑
k ̸=j

γnj,nkθj
θk

(
γ1∆̂IMWnj · σ∆IM

)
−

N∑
i̸=n

αij,nj

(
γ1∆̂IMWnj · σ∆IM

)
=

(
δ1
ϕ1

)2

· σ2SP |σ∆IM
(A.14)

with δ1 = ϕ1γ1 and σ2SP is the variance of the SP term defined in equation (A.13). Then, it follows

that the standard deviation of the global response function is σGR = | δ1ϕ1
| · σ2SP |σ∆IM

.
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A.8 Mechanisms: Input-Output vs Spatial Competition

We now decompose the the global response GRnj term in its component. In particular, we define

the Input-Output (IOnj)component as:

IOnj =

J∑
k

γnj,nkθj
θk

∆̂MAnk (A.15)

and the Spatial Competition (SC) as:

SCnj = −
N∑
i

αij,nj∆̂MAij (A.16)

To estimate the coefficients βIO1 and βSC1 from the multiple regression

∆Lnj = βIO1 IOnj + βSC1 SCnj + ϵnj , (A.17)

we seek the partial effects of each regressor on the outcome, holding the other variable constant.

These coefficients do not equal the simple ratio of covariances to variances, as in a bivariate regres-

sion. Instead, by the Frisch-Waugh-Lovell (FWL) theorem, we can derive βIO1 in three steps: (1)

regress IOnj on SCnj and obtain the residuals ĨOnj , which capture the variation in IOnj orthogo-

nal to SCnj ; (2) regress ∆Lnj on SCnj and obtain the residuals L̃nj ; and (3) regress L̃nj on ĨOnj .

The resulting slope coefficient is

βIO1 =
Cov(L̃nj , ĨOnj)

Var(ĨOnj)
, βSC1 =

Cov(L̃nj , S̃Cnj)

Var(S̃Cnj)
.

with

ĨOnj = IOnj − (α′
1SCnj)

=

J∑
k

γnj,nkθj
θk

(
ϕ1γ1∆̂IMWnj

)
− α′

1

[
−

N∑
i

αij,nj

(
ϕ1γ1∆̂IMW ij

)]
= δ1SP

IO|SC

and similarly

S̃Cnj = SCnj − (α′′
1IOnj)

= −
N∑
i

αij,nj

(
ϕ1γ1∆̂IMW ij

)
− α′′

1

[
J∑
k

γnj,nkθj
θk

(
ϕ1γ1∆̂IMWnj

)]
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= δ1SP
SC|IO

where α′
1 and α′′

1 come from regressing IOnj SCnj , and vice-versa, respectively. Intuitively, this

captures the effect of changes in input-output linkages (IOnj) on employment changes (∆Lnj),

after removing the component of variation in both variables that is explained by the SC component

(SCnj). A symmetric procedure yields βSC1 . These partial regression coefficients reflect themarginal

effect of each regressor, net of the influence of the other, and are what OLS estimates in the presence

of multiple, potentially correlated covariates.

Then, it follows that:

βIO1 =
Cov(∆̃Lnj , ĨOnj)

Var(ĨOnj)
=

Cov(L̃nj ,SP IO|SC )
Var(SP IO|SC )

δ1
=
SPEIO|SC

δ1
(A.18)

βSC1 =
Cov(L̃nj , S̃Cnj)

Var(S̃Cnj)
=

Cov(L̃nj ,SPSC|IO)
Var(SPSC|IO )

δ1
=
SPESC|IO

δ1
(A.19)

B Estimates of iceberg trade costs

B.1 Data to construct the images of US infrastructure networks

We construct a spatial network of trade costs for the year 2010, drawing on geospatial data for

the highway, railroad, and waterway networks. Our approach closely follows Allen and Arkolakis

(2014), with adjustments based on data availability and updated sources.

For the highway network, we use the 2010 release of the National Highway Planning Network

(NHPN) dataset, available through the U.S. Department of Transportation at link to NHPN. This

dataset is available for several years—2000, 2002-2006, 2010, 2012, and 2014. Allen and Arkolakis

(2014) rely on the 2005 version; we instead use the 2010 version to align with the timing of our

analysis. Following their methodology, we classify roads into three categories: interstate highways,

highways, and other roads. We assign instantaneous trade costs based on speed limits across road

types. Interstate highways—the fastest road type—are normalized to a cost of 1. Highways are

assigned a cost of 70/55, other roads 70/35, and off-road pixels 70/20. The off-road cost is chosen

to reflect the speed of transporting goods on foot, relative to the speed of interstate highways.

For the railroad network, we use shapefiles available through Data.gov, the U.S. federal gov-

ernment’s open data platform (link to Data.gov). These files provide detailed spatial information

on rail infrastructure as of 2010. While Allen and Arkolakis (2014) rely on the Center for Trans-

portation Analysis Railroad Network dataset, that source is no longer publicly available (a point

also confirmed in correspondence with Allen and Arkolakis, 2014). An alternative dataset from the
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Bureau of Transportation Statistics (BTS) is also unsuitable, as it only provides the most recent

rail network as of 2023 and does not offer historical coverage. Moreover, the Allen and Arko-

lakis (2014)’s dataset allows for classification of railroads into three categories based on speed; our

dataset does not contain this information. Consequently, we assign a uniform instantaneous trade

cost of 1 to all railroad pixels and a cost of 3 to off-rail pixels, for both 2000 and 2010.

The waterway network is derived from the Bureau of Transportation Statistics (BTS)’ dataset

on navigable waterways, which includes rivers and oceans (available at: link to BTS). We assume

the geography of the waterway network remains constant between 2000 and 2010. Allen and

Arkolakis (2014) use data from the U.S. Army Corps of Engineers’ Navigation Data Center (1999),

which does not account for the presence of ports. We extend their approach by incorporating ports,

which significantly reduce trade costs. Specifically, we assign a trade cost of 10 to pixels without

water access, 1 to inland waterways, 1 to oceans, and 0.5 to maritime highways (defined as ocean

routes and the largest navigable rivers). Pixels containing ports are assigned a much lower trade

cost of 0.1, reflecting the substantial reduction in shipping costs for commuting zones with direct

port access. Note that the waterway network of Allen and Arkolakis (to cite) do not accounts for

ports. We assume that the geography of waterways has not changed between 2000 and 2010 and

use the instantaneous trade costs of 2010 also for year 2000.

Next, we present the steps to estimate iceberg trade costs.

(a) US route network year 2010 (b) US water network

Figure B.1: US infrastructures by mode

[Add railway network image]

B.2 Estimate total iceberg trade costs by sector

To get to our measure of iceberg trade costs, we first estimate the relative costs of trade across

different transport modes using a discrete choice framework that is entirely separate from the model

in Section 2. This framework is used solely to infer trade costs from mode-specific trade shares,

and is useful to exploit the infrastructure networks built in section B.1. As discussed in Allen and
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Arkolakis (2014), using a distinct estimation model mitigates endogeneity concerns related to the

location of transportation infrastructure—concerns that would arise if we used the theoretical model

in Section 2 with variation in bilateral trade flows (e.g., a highway between New York and Chicago

may exist because the two cities already trade heavily). By focusing on the relative shares of trade

by mode, we effectively control for the total bilateral trade volume. We compare trade shares

and distances by mode between a given origin and destination pair (rather than across all pairs),

which acts like a fixed-effects approach. This helps reduce endogeneity, though not entirely—since

shipment by a specific mode may still reflect the composition of goods traded between the two

locations.

Differently from Allen and Arkolakis (2014), we add the sectoral dimension j and apply this

framework within sectors since we estimate trade costs for 12 tradable sectors. For every pair of

destinations i, n ∈ S, a set of traders choose a mode of transport m ∈ {1, . . . ,M} to minimize the

cost of shipping one unit of a good j from i to n. The iceberg trade cost incurred by trader t when

using mode m in sector j is given by eτ
j
mdij,njm +fjm+νjtm where dij,njm denotes the distance between

i and n by mode m (as computed with the FMM), τ jm is the mode-specific variable cost per unit

of distance, f jm is a mode-specific fixed cost (independent of distance), and νjtm is an idiosyncratic

cost shock specific to trader t and mode m. We assume that νjtm is independently and identically

distributed across traders and modes, following a Gumbel distribution with shape parameter ψj ,

i.e., Pr{νj ≤ x} = e−e−ψ
jx
. It follows that eν

j
follows a Fréchet distribution with parameter ψj ,

with cumulative distribution function Pr{eνj ≤ x} = e−x−ψj
.

Let λij,njm denote the share of trade in sector j between locations i and n that is shipped using

mode m. Given the distributional assumption on νjtm, the mode choice probabilities take the form:

λij,njm =
e(−ajmdij,njm −bjm)∑

k

(
e(−ajkd

j
k(i,n)−bjk)

) (B.1)

where ajm := ψjτ jm and bjm := ψjf jm. Given the set of mode-specific distances dm(i, n) : M ×
S × S → R+ estimated using the FMM, we can estimate the parameters ajm and bjm so that the

predicted mode shares λij,njm match the observed shares in the data using (B.1). To identify the

relative scale parameter ψj , we normalize by assuming that the fixed cost of road transport is zero,

i.e., f jm = 0 for road, so that no fixed cost is incurred for this mode. We then estimate ajm and

bjm from equation (B.1) using a nonlinear least square routine. To pin down the relative scale, we

follow Allen and Arkolakis (2014) and assume that traders do not incur a fixed cost of traveling

via road.

Given the estimates of ajm and bjm, we estimate total iceberg trade costs using the observed

level of bilateral trade flows. From the discrete choice framework, the average geographic trade
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cost between i and n in sector j, up to a scale ψj (given {âjm}{b̂jM}), is:

kij,njg =
1

ψj
Γ

(
1

ψj

)(∑
m

e(−ajmdij,njm −bjm)

)− 1

ψj

(B.2)

Suppose that the total costs k has a geographic and non-geographic component such that k =

kg + kng, with kng approximated by vector of non geographic bilateral observables C(i, n) such as

similarities in languages and ethnicity. Taking the log of equation (2.3), we estimate the following

gravity equation separately for each of the 12 manufacturing sectors (suppressing the time subscript

t), using a common trade elasticity θ = 8.2823 across all sectors:

ln(πij,nj) =
θ

ψj
ln
∑
m

(
e(−âjmdij,njm −b̂jm)

)
− θβj′lnCij,nj + δij + δnj + ϵij,nj (B.3)

Given this elasticity, we estimate the sector-specific scale parameter ψj , which we then use to recover

the mode-specific trade cost parameters ajm, f jm, and τ jm, and ultimately to compute geographic

iceberg trade costs kij,nj via equation (B.2).

We repeat this procedure for each tradable sector, using sector- and mode-specific trade shares

λij,njm to identify ψj and bilateral trade costs kij,nj . We report in panels (a) and (b) of figure B.2

kernel density estimates of our total iceberg trade costs kij,nj , which appear all to be between 1

and 2, except for the oil sector. This compares well with the density function of the total iceberg

trade cost of Allen and Arkolakis (2014), as shown in panel (c).

Panels (a) and (b) of Figure B.3 show how the estimated mode-specific trade costs vary with

distance across sectors. For comparison, we report the estimated trade costs by mode from a

replication of Allen and Arkolakis (2014) in figure B.4.24 In our estimates, all iceberg trade costs

lie between one and two for most sectors, with three exceptions: petroleum and coal (NAICS

324), transport equipment (NAICS 336), and electronics (NAICS 334–335). This likely reflects

the specific transport patterns in these sectors. For instance, most U.S. crude oil is transported

by pipeline and road, with relatively low trade shares by air, water, or rail. Similarly, transport

equipment tends to be shipped primarily by road due to its bulk. For electronics, iceberg costs

are much lower than in the aforementioned sectors, but our estimates suggest that road is the

dominant transport mode, with air used only over short distances. All other sectors exhibit the

23As estimated in the Ricardian framework of Eaton and Kortum (2002).
24The replication package from Allen and Arkolakis (2014) does not include the code necessary to reproduce panel

(b) of their Figure X (equivalent to the figure B.4 here). We plot their available cost estimates against distance but
are unable to replicate the original figure exactly. In their estimates in the paper, iceberg trade costs generally range
between one and two across modes. However, in our replication, road costs fall slightly below one for short distances.
To ensure comparability, we normalize all mode-specific trade costs by the minimum estimated road cost so that all
values lie above one. Additionally, waterborne trade costs in their estimates exceed two at longer distances.
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(a) Year 2000 (b) Year 2007

(c) Total trade costs from Allen and Arkolakis (2014)
(replicated by authors)

Figure B.2: This figure reports, in Panels (a) and (b), the kernel density estimates of iceberg trade costs by
sector for the years 2000 and 2007, respectively. For comparison, Panel (c) shows the kernel density estimate
of total iceberg trade costs obtained by replicating the estimates of Allen and Arkolakis (2014) using their
publicly available code, and plotting the resulting distribution.
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expected pattern of increasing costs with distance across modes.25 Given that the vast majority

of trade occurs over roads, it is not surprising that road transport is estimated to have the lowest

trade cost across all sectors—except at extreme distances. As the distance between origin and

destination increases, the relative cost of air, water, and rail transport declines compared to road,

which aligns with the observed decrease in the share of trade carried by road over longer distances.

Overall, the magnitude of our estimated trade costs is broadly consistent with previous estimates

of domestic trade frictions in the literature. For example, Anderson and Van Wincoop (2004)

estimate an iceberg trade cost of approximately 55% for domestic distribution in a representative

high-income country.

Table B.1 reports also the estimate of the variable τ jm and fixed f jm costs for each sector, as well

estimates of the shape parameter ψj given that we set the trade elasticity θj = 8.28 ∀j. Excepts for
the three sectors mentioned above, the estimates are in line with the ones obtained at the aggregate

level in table II of Allen and Arkolakis (2014).

Table B.1: Estimated sectoral mode-specific relative cost of travel

Sector name ψj Variable cost Fixed cost

Road Rail Water Air Rail Water Air

Petroleum & Coal (324) 1.942 1.030 4.594 0.129 5.149 0.001 0.001 5.149
Chemicals (325) 14.051 0.534 0.001 0.636 0.016 0.423 0.427 0.427
Plastics & Rubber (326) 13.627 0.563 0 0.121 0.013 0.440 0.661 0.550
Nonmetallic Minerals (327) 15.109 0.536 0 0.157 0.008 0.463 0.530 0.496
Machinery (333) 17.154 0.475 0.004 0.243 0.015 0.408 0.525 0.350
Transport Equip (336) 1.342 0.001 4.364 5.054 4.678 0.746 2.609 0.746
Food & Bev (311-312) 16.736 0.543 0.002 0.224 0.262 0.486 0.538 0.478
Textiles & Apparel (313-316) 25.113 0.317 0 0.305 0.005 0.319 0.358 0.309
Wood & Paper (321-323) 10.868 0.617 0 0.478 0.019 0.552 0.782 0.713
Metals (331-332) 10.840 0.649 0.001 0.437 0.176 0.556 0.692 0.554
Electronics (334-335) 2.368 0 0.381 0.678 3.313 1.690 2.323 0
Furniture & Misc (337-339) 12.505 0.607 0.015 0.333 0 0.640 0.720 0.480

Normalized mode-specific distance Note that to obtain the estimates of kij,nj , we first need

data on the instantaneous cost function, τm : S → R++, and then calculate the normalized mode-

specific distance, dm(i, j) presented in section B.2. To define the instantaneous cost function τm, we

use data on the transportation network constructed in section B.1. We assign low values to pixels

on the network and high values to pixels off the network. We map elements of the transportation

network into a raster for each transportation mode, resulting in four normalized rasters, each

25Because we adapt the Allen and Arkolakis (2014) code to a multi-sector framework, we also observe road costs
below one in approximately 600 out of 12,000 observations. As above, we normalize road costs by their minimum to
ensure that all estimates lie above one.
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(a) Year 2000

(b) Year 2007

Figure B.3: Sectoral Mode-Specific Estimated Iceberg Trade costs by distance. The figure shows how the
sectoral estimated trade costs for each mode of transportation vary with distance for year 2000 and 2007.
In both panels, distance is normalized so that the width of the United States has distance of 1.
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Figure B.4: Replication of Allen and Arkolakis (2014) estimate iceberg trade costs by mode - (Authors
computation)

representing one mode of transport. These rasters have a resolution of 1452 by 991 pixels. For

highways, the cost is normalized to one, while non-interstate highways are assigned a cost of 70
55 ,

arterial roads a cost of 70
35 , and other roads a cost of 70

20 . A similar approach is applied to other modes

of transport. Once the instantaneous cost function is defined, we apply the Fast Marching Method

(FMM) to determine the normalized mode-specific distance dm(i, j) for any pair of locations i and

j for a given transportation mode m. The normalization is done such that the width of the United

States, measured in a straight line, is assigned a value of 1.

C Data description

List of sectors. We use a total of 22 sectors, as in Caliendo et al. (2019). The 12 manufacturing

sectors considered in this study include Food, Beverage, and Tobacco Products (NAICS 311–312);

Textile, Textile Product Mills, Apparel, Leather, and Allied Products (NAICS 313–316); Wood

Products, Paper, Printing, and Related Support Activities (NAICS 321–323); Petroleum and Coal

Products (NAICS 324); Chemical Products (NAICS 325); Plastics and Rubber Products (NAICS

326); Nonmetallic Mineral Products (NAICS 327); Primary Metal and Fabricated Metal Products

(NAICS 331–332); Machinery (NAICS 333); Computer and Electronic Products and Electrical

Equipment and Appliances (NAICS 334–335); Transportation Equipment (NAICS 336); and Fur-

niture and Related Products, along with Miscellaneous Manufacturing (NAICS 337–339). The

eight service sectors include Transport Services (NAICS 481–488); Information Services (NAICS

511–518); Finance and Insurance (NAICS 521–525); Real Estate (NAICS 531–533); Education

(NAICS 61); Health Care (NAICS 621–624); Accommodation and Food Services (NAICS 721–722);

and Other Services, which encompass sectors such as NAICS 493, 541, 55, 561, 562, 711–713, and

811–814. Additionally, the analysis incorporates the Wholesale and Retail Trade sectors (NAICS
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42–45) as well as the Construction sector.

D Tables

Table 1: Descriptive Statistics

Variables Obs Mean St. Dev. Min Max

Panel A: Pooled sample (12 tradable and 10 non-tradable sectors)

∆ empl. share (×100) 15884 -0.032 0.940 -25.209 45.986

∆ Unemployment 15884 0.007 0.049 -0.518 0.272

∆ wages 15881 1.110 0.737 -2.868 5.271

∆ population 15884 22435.016 74984.099 -248157.750 1177043.625

MA 2000 15884 894.506 1764.771 0.322 31507.000

MA 2007 15884 935.710 1836.134 0.599 33633.000

∆ MA 15884 41.204 371.919 -5736.500 6200.900

GRnj 15884 569.355 950.214 -603.255 7423.771

IOnj term 15884 -31.878 65.439 -1164.717 3.817

Panel B: 12 Tradable sectors

US China Shock 8664 0.193 0.439 0.000 7.398

IV China Shock 8664 0.158 0.343 0.000 5.873

∆ empl. share (×100) 8664 -0.155 0.631 -13.288 9.886

∆ Unemployment 8664 0.007 0.049 -0.518 0.272

∆ wages 8661 1.105 0.744 -2.868 5.271

∆ population 8664 22435.016 74986.066 -248157.750 1177043.625

MA 2000 8664 1473.769 2213.779 3.280 31507.000

MA 2007 8664 1544.640 2296.777 2.062 33633.000

∆ MA 8664 70.871 482.530 -5736.500 6200.900

GRnj 8664 1066.426 1053.199 -527.540 7423.771

IOnj term 8664 -35.835 72.561 -1164.717 3.817

SCnj term 8664 1102.261 1068.175 -23.371 7425.347

Panel C: 10 Non-tradable sectors

∆ empl. share (×100) 7220 0.116 1.194 -25.209 45.986

∆ Unemployment 7220 0.007 0.049 -0.518 0.272

∆ wages 7220 1.116 0.728 0.021 2.910

∆ population 7220 22435.016 74986.931 -248157.750 1177043.625

MA 2000 7220 199.391 291.820 0.322 3926.000

MA 2007 7220 204.994 328.962 0.599 4773.200

∆ MA 7220 5.603 150.344 -2655.519 1092.300

GRnj 7220 -27.130 55.335 -603.255 3.775

IOnj term 7220 -27.130 55.335 -603.255 3.775
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Table 2: Parameters to Compute Market Access

Parameter Source

γij (Value Added Shares) Bureau of Economic Analysis
γij,ik (Input-Output Shares) World Input Output Database
1− ψ (Labor Share) Bureau of Economic Analysis
θj (Trade Elasticity) Caliendo and Parro (2015)
κij,nj (Sectoral Trade Cost) Own FMM estimates
η (Elasticity of Substitution) 1 (Set Exog.)
ρ (Relation between CMA and MA) 1 (Set Exog.)

Table 3: Market Access by Sector: Initial Levels and Change, 2000–2007

Market Access

Sector Industry %∆2007−2000 Level in 2000

Textile, Textile Products, Apparel, Mill -42.55 6491

Computer and Electronic Products -21.58 4864

Plastics and Rubber Products -15.97 11005

Wood Products, Paper, Printing, etc. -15.09 65699

Machinery -14.37 11337

Manufacturing Furniture and Related Products, and Misc. -5.76 10412

Transportation Equipment -4.77 1314

Nonmetallic Mineral Products -3.32 3630

Chemicals -3.22 3389

Primary Metal and Fabricated Metal Products -2.21 29620

Food, Beverage, Tobbaco 3.63 17629

Petroleum and Coal Products 7.21 270

Information Services -12.18 30

Construction 1.77 23

Real Estate 4.41 26

Transport Services 4.83 29

Services Educational 6.59 27

Finance and Insurance 8.58 35

Accommodation and Food Services 12.41 39

Health 16.82 45

Wholesale and Trade 121.95 23
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Table 4: Market Access, Geography, and Labor Market

log(market access)
(1) (2) (3) (4)
2000 2007 2000 2007

log(average trade cost) -0.614∗∗∗ -0.643∗∗∗

(0.011) (0.011)
log(employment) 0.172∗∗∗ 0.170∗∗∗

(0.007) (0.007)

N 8664 8664 8664 8664

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 5: Exogenous Import Penetration

∆IMWUS
nj

(1)

∆IMWOther
nj 0.432∗∗∗

(0.007)

N 8664

R-squared 0.969

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The Table reports the standardized coefficient from equation (3.1). A one standard deviation in-

crease in Chinese import penetration to other developed economies correspond to about USD 350. The non

standardized coefficient, corresponding to an increase of USD 1000, has a magnitude of 1,259, and a standard

error of .019
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Table 6: China Shock and Change in Market Access

∆MA

OLS IV

∆IMWUS
nj −109.51∗∗∗ –

(22.33)

∆̂IMWnj – −103.82∗∗∗

(21.24)

N 8664 8664

F stat – 4318.51

Cluster State State
Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses. Clustering is at the state level.

This is a regression of change in market access between 2007 and 2000 on US labor market level import

exposure (722 CZ x 12 sectors). In column 2, we report the IV regressions results where the US labor market

import exposure is instrumented with import exposure of other rich countries.

Table 7: Regression Results for Manufacturing

∆ employ share × 100
(1) (2) (3) (4) (5) (6)

δ1 (PE) -0.334∗∗∗ -0.340∗∗∗

(0.0309) (0.0303)
[-0.356 (0.032)] [-0.362 (0.032)]

ϕ1 (GE w/o spill.) 0.334∗∗∗ 0.340∗∗∗

(0.0309) (0.0303)
[0.356 (0.032)] [0.362 (0.032)]

βstd1 (GE w/ spill.) -0.130∗∗∗ -0.133∗∗∗

(0.0274) (0.0297)
[-0.138 (0.029)] [-0.141 (0.0316)]

Observations 8664 8664 8664 8664 8664 8664
Controls Yes Yes Yes No No No

Spatial Propagation Effect
SPE 0.13 0.133
Controls Yes No
N 8664 8664

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses. Clustering is at the state
level. We report the standardized coefficient in square brackets with corresponding standard errors. Control
variables include initial employment share of the commuting zone, initial college educated share of the labor
force, initial share of male workers, initial share of young workers, and initial share of native workers.
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Table 8: Decomposing Spillovers: Manufacturing

∆ employ share × 100

(1) (2)

Gen. equilibrium w/ trade spill. -0.0985∗∗∗ -0.0958∗∗∗

(0.0284) (0.0303)

[-0.105 (0.030)] [-0.102 (0.032)]

Gen. equilibrium w/ I-O spill. 0.107∗∗∗ 0.121∗∗∗

(0.0142) (0.0156)

[0.113 (0.015)] [0.128 (0.016)]

Spatial Propagation Effect

Through Trade Linkages 0.098 0.095

Through I-O Linkages -0.107 -0.121

Observations 8664 8664

Controls Yes No

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses. Clustering is at the state

level. We report the standardized coefficient in square brackets with corresponding standard errors. Control

variables include initial employment share of the commuting zone, initial college educated share of the labor

force, initial share of male workers, initial share of young workers, and initial share of native workers.

Table 9: Regression Results for Services

∆ employ share × 100
(1) (2)

Gen. equilibrium w/ spill. 0.100∗∗∗ 0.102∗∗∗

(0.0136) (0.0153)
[0.107 (0.014)] [0.108 (0.016)]

Spatial Propagation Effect

SPE - 0.100 - 0.102

Observations 7220 7220
Controls Yes No

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses. Clustering is at the state
level. We report the standardized coefficient in square brackets with corresponding standard errors. Control
variables include initial employment share of the commuting zone, initial college educated share of the labor
force, initial share of male workers, initial share of young workers, and initial share of native workers.
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Table 10: Regression Results: All Sectors

∆ employ share × 100
(1) (2)

Gen. equilibrium w/ spill -0.156∗∗∗ -0.157∗∗∗

(0.0217) (0.0229)
[-0.165 (0.023)] [-0.165 (0.024)]

Spatial Propagation Effect

SPE 0.156 0.157

Observations 15884 15884
Controls Yes No

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses. Clustering is at the state
level. We report the standardized coefficient in square brackets with corresponding standard errors. Control
variables include initial employment share of the commuting zone, initial college educated share of the labor
force, initial share of male workers, initial share of young workers, and initial share of native workers.

Table 11: China Shock: Heterogeneity in General Equilibrium Effect

Change in emp. share × 100

(1) (2) (3) (4) (5) (6)
≥ College ≤ H. School Female Male Native Foreign

Mfg (βstd1 ) -0.0247∗∗∗ -0.0509∗∗∗ -0.0383∗∗∗ -0.0373∗∗∗ -0.0679∗∗∗ -0.00762∗∗∗

(0.00583) (0.0187) (0.0114) (0.0101) (0.0189) (0.00259)
[-0.03 (0.007)] [-0.059 (0.021)] [-0.043 (0.013)] [-0.047 (0.012)] [-0.049 (0.013)] [-0.035 (0.012)]

N 8664 8664 8664 8664 8664 8664

SPE (M) 0.0247 0.0509 0.0383 0.0373 0.0679 0.00762

≥ College ≤ H. School Female Male Native Foreign
Serv (βstd1 ) 0.112∗∗∗ 0.230∗∗∗ 0.134∗∗∗ 0.208∗∗∗ 0.319∗∗∗ 0.0236∗∗∗

(0.0244) (0.0454) (0.0279) (0.0413) (0.0627) (0.00781)
[0.146 (0.031)] [0.267 (0.052)] [0.154 (0.031)] [0.267 (0.052)] [0.231 (0.045)] [0.111 (0.036)]

N 7220 7220 7220 7220 7220 7220

SPE (Serv) -0.112 -0.230 -0.134 -0.208 -0.319 -0.0236

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses. Clustering is at the state
level. We report the standardized coefficient in square brackets with corresponding standard errors. Control
variables include initial employment share of the commuting zone, initial college educated share of the labor
force, initial share of male workers, initial share of young workers, and initial share of native workers.
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Table 12: China Shock: Demographics of General Equilibrium Effect

Change in emp. share × 100

(1) (2) (3)
Age 16-34 Age 35-49 Age 50-64

Manufacturing (βstd1 ) -0.0268∗∗∗ -0.0307∗∗∗ -0.0180∗∗∗

(0.00817) (0.00817) (0.00485)
[-0.0366 (0.011)] [-0.0548 (0.014)] [-0.0631 (0.017)]

N 8664 8664 8664

Spatial Propagation 0.0268 0.0307 0.0180
Effect (Manuf.)

Age 16-34 Age 35-49 Age 50-64
Services (βstd1 ) 0.184∗∗∗ 0.106∗∗∗ 0.0526∗∗∗

(0.0374) (0.0213) (0.0105)
[0.252 (0.051)] [0.189 (0.038)] [0.184 (0.036)]

N 7220 7220 7220

Spatial Propagation -0.184 -0.106 -0.0526
Effect (Service)

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses. Clustering is at the state
level. We report the standardized coefficient in square brackets with corresponding standard errors. Control
variables include initial employment share of the commuting zone, initial college educated share of the labor
force, initial share of male workers, initial share of young workers, and initial share of native workers.

Table 13: Regression Results: Wages

∆ Log wages
Manufacturing Services

(1) (2) (3) (4)

δ1 (Partial Equilibrium) -0.000175 -0.000541 -0.000403 -0.000175
(0.0005) (0.0006) (0.000242) (0.000308)

[-0.0038 (0.011)] [-0.0117 (0.014)] [-0.00875 (0.005)] [-0.00379 (0.006)]

Observations 8664 8664 7220 7220
Controls Yes No Yes No

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses. Clustering is at the state
level. We report the standardized coefficient in square brackets with corresponding standard errors. Control
variables include initial employment share of the commuting zone, initial college educated share of the labor
force, initial share of male workers, initial share of young workers, and initial share of native workers.
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Table 14: Regression Results: Working Age Population

∆ Working Age Population
(1) (2)

δ1 (Partial Equilibrium) 9965.6 -7738.8
(12700.7) (7456.8)

[0.133 (0.169)] [-0.103 (0.099)]

Observations 722 722
Controls Yes No

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses. Clustering is at the state
level. We report the standardized coefficient in square brackets with corresponding standard errors. Control
variables include initial employment share of the commuting zone, initial college educated share of the labor
force, initial share of male workers, initial share of young workers, and initial share of native workers.

Table 15: Regression Results: Unemployment

∆ Unemployment Share
(1) (2) (3) (4)

δ1 (Partial Equilibrium) 0.035∗∗∗ 0.046∗∗∗

(0.008) (0.007)
β1 (General Equilibrium) 0.036∗∗ 0.037

(0.018) (0.024)
[0.714 (0.157)] [0.952 (0.144)] [0.748 (0.356)] [0.756 (0.488)]

Observations 722 722 722 722
Controls Yes No Yes No

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses. Clustering is at the state
level. We report the standardized coefficient in square brackets with corresponding standard errors. Control
variables include initial employment share of the commuting zone, initial college educated share of the labor
force, initial share of male workers, initial share of young workers, and initial share of native workers.
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Table 16: Regression Results: Unemployment

∆ Unemployment Share
(1) (2) (3) (4)

Trade Spillovers 0.030∗∗∗ 0.029∗∗

(0.010) (0.014)
Input-Output - 0.028∗∗∗ -0.039∗∗∗

(0.007) (0.007)
[0.618 (0.212)] [0.591 (0.276)] [-0.572 (0.146)] [-0.804 (0.135)]

Observations 722 722 722 722
Controls Yes No Yes No

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses. Clustering is at the state
level. We report the standardized coefficient in square brackets with corresponding standard errors. Control
variables include initial employment share of the commuting zone, initial college educated share of the labor
force, initial share of male workers, initial share of young workers, and initial share of native workers.

E Figures Discussed in Main Text

Figure 1: Spatial distribution of Market Access in years 2000 and 2007

(a) Market Access 2000 (b) Market Access 2007

Note: Panel (a) shows the spatial distribution of Market Access in 2000, and Panel (b) in 2007. Values are
averaged across sectors within each commuting zone. Back to section 5.1.
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Figure 2: Persistence of Market Access

Notes: The figure plots the correlation between U.S. labor markets’ market access in 2000 and 2007, as
estimated by the authors. Each blue circle represents a commuting zone–sector, with size proportional to its
2000 population. Highlighted labels correspond to CZ–sectors with the highest market access. For example,
“LA CZ – Food and Bev, Tab.” refers to the Los Angeles metropolitan area in the Food, Beverage, and
Tobacco sector; “IL” to Illinois; “MI” to Michigan; “NC” to North Carolina; and “CA” to California (CZs
around San Francisco). Back to section 5.1.
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Figure 3: Estimated Change in Market Access (2000-2007)

Notes: The figure reports the spatial distribution of the estimated change in market access, computed as
described in Section 4.3. We average market access across sectors within each commuting zone. Most
commuting zones experienced an expansion in market access during the period 2000–2007. While this
measure captures all general equilibrium adjustments in the U.S. labor market over the period, the figure
shows that the commuting zones experiencing a contraction in market access are those most exposed—both
directly and indirectly—to the China Shock, as shown in panels (a) and (b) of Figure 4. Back to section 5.1.

Figure 4: Direct Import Exposure vs Global Response

(a) Direct Import Exposure (b) Global Response

Note: Panel (a) reports the spatial distribution of the direct exogenous import penetration, while panel
(b) our global response measure. To obtain the figures, we average market access across sector within each
commuting zones. Back to section 5.1.
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Figure 5: Mechanisms: Input-Output and Spatial Competition components

(a) Input-Output component (b) Domestic Spatial Competition Component

Note: Panel (a) reports the spatial distribution of the input-output (IO) component, while panel (b) shows
the spatial competition term. To construct the figures, we average market access across sectors within each
commuting zone (CZ). The component in panel (b) does not vary within states, as the 2000 export shares
are measured at the state level. This implies that each CZ within a state is assumed to trade the same
amount of goods with other CZs in each sector. Back to section 5.1.
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