Optimal Switching from Competition to Cooperation: A Preliminary ExplorationBook chapterRaouf Boucekkine, Carmen Camacho et Benteng Zou, In: Dynamic Modeling and Econometrics in Economics and Finance, V. Veliov, J. Haunschmied, R. Kovacevic et W. Semmler (Eds.), 2021, pp. 209-225, Springer International Publishing, 2021

In this paper, we tackle a generic optimal regime switching problem where the decision-making process is not the same from one regime to another. Precisely, we consider a simple model of optimal switching from competition to cooperation. To this end, we solve a two-stage optimal control problem. In the first stage, two players engage in a dynamic game with a common state variable and one control for each player. We solve for open-loop strategies with a linear state equation and linear-quadratic payoffs. More importantly, the players may also consider the possibility to switch at finite time to a cooperative regime with the associated joint optimization of the sum of the individual payoffs. Using theoretical analysis and numerical exercises, we study the optimal switching strategy from competition to cooperation. We also discuss reverse switching.

Stochastic petropolitics: The dynamics of institutions in resource-dependent economiesJournal articleRaouf Boucekkine, Fabien Prieur, Chrysovalantis Vasilakis et Benteng Zou, European Economic Review, Volume 131, pp. 103610, 2021

We investigate the link between resource revenues volatility and institutions. We build a stochastic differential game with two players (conservatives vs. liberals) lobbying for changing the institutions in their preferred directions. First, uncertainty surrounds the dynamics of institutions and the resource revenues. Second, the lobbying power is asymmetric, the conservatives’ power being increasing with resource revenues. We show the existence of a unique equilibrium in the set of affine strategies. We then examine to which extent uncertainty leads to more liberal institutions in the long run, compared to the deterministic case. We finally explore the institutional impact of volatility using a database covering 91 countries over the period 1973–2005. Focusing on financial liberalization, we find that as oil revenue volatility increases, liberalization goes down. This result is robust to different specifications and sample distinctions.

The economics of epidemics and contagious diseases: An introductionJournal articleRaouf Boucekkine, Andrés Carvajal, Shankha Chakraborty et Aditya Goenka, Journal of Mathematical Economics, Volume 93, pp. 102498, 2021
Journal of Mathematical Economics. Special issues on "The economics of epidemics and emerging diseases"BookRaouf Boucekkine, Shankha Chakraborty et Aditya Goenka (Eds.), 2021-03, Volume 93, 2021
From firm to global-level pollution control: The case of transboundary pollutionJournal articleRaouf Boucekkine, Giorgio Fabbri, Salvatore Federico et Fausto Gozzi, European Journal of Operational Research, Volume 290, Issue 1, pp. 331-345, 2021

We study the joint determination of optimal investment and optimal depollution in a spatiotemporal framework where pollution is transboundary. Pollution is controlled at a global level. The regulator internalizes that: (i) production generates pollution, which is bad for the wellbeing of population, and that (ii) pollution flows across space driven by a diffusion process. We solve analytically for the optimal investment and depollution spatiotemporal paths and characterize the optimal long-term spatial distribution when relevant. We finally explore numerically the variety of optimal spatial distributions obtained using a core/periphery model where the core differs from the periphery either in terms of input productivity, depollution efficiency, environmental awareness or self-cleaning capacity of nature. We also compare the distributions with and without diffusion. Key aspects in the optimal policy of the regulator are the role of aversion to inequality, notably leading to smoothing consumption across locations, and the control of diffusive pollution adding another smoothing engine.

Advances in growth and macroeconomic stabilityBookMathematical Social Sciences, Raouf Boucekkine, Thomas Seegmuller et Alain Venditti (Eds.), 2021-07, Volume 112, 166 pages, 2021
Advances in growth and macroeconomic dynamics: In memory of Carine NourryJournal articleRaouf Boucekkine, Thomas Seegmuller et Alain Venditti, Mathematical Social Sciences, Volume 112, pp. 1-6, 2021

This paper is an introduction to the special issue of Mathematical Social Sciences on Advances in growth and macroeconomic dynamics in memory of Carine Nourry.

A theory of elite-biased democraciesJournal articleRaouf Boucekkine, Rodolphe Desbordes et Paolo Melindi-Ghidi, Mathematical Social Sciences, Volume 112, pp. 159-166, 2021

Elite-biased democracies are those democracies in which former political incumbents and their allies coordinate to impose part of the autocratic institutional rules in the new political regime. We document that this type of democratic transition is much more prevalent than the emergence of pure (popular) democracies in which the majority decides the new institutional rules. We then develop a theoretical model explaining how an elite-biased democracy may arise in an initially autocratic country. To this end, we extend the benchmark political transition model of Acemoglu and Robinson (2005) along two essential directions. First, population is split into majority versus minority groups under the initial autocratic regime. Second, the minority is an insider as it benefits from a more favourable redistribution by the autocrat. We derive conditions under which elite-biased democracies emerge and characterise them, in particular with respect to pure democracies.

Genetic diversity and its value: conservation genetics meets economicsJournal articleNoël Bonneuil et Raouf Boucekkine, Conservation Genetics Resources, Volume 12, Issue 1, pp. 141-151, 2020

Does drawing economic benefit from nature impinge on conservation? This has been a subject of controversy in the literature. The article presents a management method to overcome this possible dilemma, and reconcile conservation biology with economics. It is based on recent advances in the mathematical theory of dynamic systems under viability constraints. In the case of a one-locus two-allele plant coexisting with a one-locus two-allele parasite, the method provides a rule for deciding when and to what extent the resistant or the susceptible strain should be cultivated, in the uncertain time-varying presence of the parasite. This is useful for preventing the fixation of the susceptible allele - and thereby limiting the plant's vulnerability in the medium term, should the parasite reappear. The method thus provides an aid to decision for economic and ecology-friendly profitability.

Geographic environmental Kuznets curves: the optimal growth linear-quadratic caseJournal articleRaouf Boucekkine, Giorgio Fabbri, Salvatore Federico et Fausto Gozzi, Mathematical Modelling of Natural Phenomena, Volume 14, Issue 1, pp. Art105-18p, 2019

We solve a linear-quadratic model of a spatio-temporal economy using a polluting one-input technology. Space is continuous and heterogenous: locations differ in productivity, nature self-cleaning technology and environmental awareness. The unique link between locations is transboundary pollution which is modelled as a PDE diffusion equation. The spatio-temporal functional is quadratic in local consumption and linear in pollution. Using a dynamic programming method adapted to our infinite dimensional setting, we solve the associated optimal control problem in closed-form and identify the asymptotic (optimal) spatial distribution of pollution. We show that optimal emissions will decrease at given location if and only if local productivity is larger than a threshold which depends both on the local pollution absorption capacity and environmental awareness. Furthermore, we numerically explore the relationship between the spatial optimal distributions of production and (asymptotic) pollution in order to uncover possible (geographic) environmental Kuznets curve cases.

Control theory in infinite dimension for the optimal location of economic activity: The role of social welfare functionJournal articleRaouf Boucekkine, Giorgio Fabbri, Salvatore Federico et Fausto Gozzi, Pure and Applied Functional Analysis, Forthcoming

In this paper, we consider an abstract optimal control problem with state constraint. The methodology relies on the employment of the classical dynamic programming tool considered in the infinite dimensional context. We are able to identify a closed-form solution to the induced Hamilton-Jacobi-Bellman (HJB) equation in infinite dimension and to prove a verification theorem, also providing the optimal control in closed loop form. The abstract problem can be seen an abstract formulation of a PDE optimal control problem and is motivated by an economic application in the context of continuous spatiotemporal growth models with capital di usion, where a social planner chooses the optimal location of economic activity across space by maximization of an utilitarian social welfare function. From the economic point of view, we generalize previous works by considering a continuum of social welfare functions ranging from Benthamite to Millian functions. We prove that the Benthamite case is the unique case for which the optimal stationary detrended consumption spatial distribution is uniform. Interestingly enough, we also find that as the social welfare function gets closer to the Millian case, the optimal spatiotemporal dynamics amplify the typical neoclassical dilution population size effect, even in the long-run.