Laurent

Publications

Modeling Time-Varying Conditional Betas. A Comparison of Methods with Application for REITsBook chapterMarcel Aloy, Floris Laly, Sébastien Laurent et Christelle Lecourt, In: Recent Econometric Techniques for Macroeconomic and Financial Data, Gilles Dufrénot et Takashi Matsuki (Eds.), 2021-01, pp. 229-264, Springer International Publishing, 2021

Beta coefficients are the cornerstone of asset pricing theory in the CAPM and multiple factor models. This chapter proposes a review of different time series models used to estimate static and time-varying betas, and a comparison on real data. The analysis is performed on the USA and developed Europe REIT markets over the period 2009–2019 via a two-factor model. We evaluate the performance of the different techniques in terms of in-sample estimates as well as through an out-of-sample tracking exercise. Results show that dynamic models clearly outperform static models and that both the state space and autoregressive conditional beta models outperform the other methods.

Volatility estimation and jump detection for drift–diffusion processesJournal articleSébastien Laurent et Shuping Shi, Journal of Econometrics, Volume 217, Issue 2, pp. 259-290, 2020

The logarithmic prices of financial assets are conventionally assumed to follow a drift–diffusion process. While the drift term is typically ignored in the infill asymptotic theory and applications, the presence of temporary nonzero drifts is an undeniable fact. The finite sample theory for integrated variance estimators and extensive simulations provided in this paper reveal that the drift component has a nonnegligible impact on the estimation accuracy of volatility, which leads to a dramatic power loss for a class of jump identification procedures. We propose an alternative construction of volatility estimators and observe significant improvement in the estimation accuracy in the presence of nonnegligible drift. The analytical formulas of the finite sample bias of the realized variance, bipower variation, and their modified versions take simple and intuitive forms. The new jump tests, which are constructed from the modified volatility estimators, show satisfactory performance. As an illustration, we apply the new volatility estimators and jump tests, along with their original versions, to 21 years of 5-minute log returns of the NASDAQ stock price index.

Jumps et modèles de type GARCH (Chapitre 3)Book chapterSébastien Laurent et Christelle Lecourt, In: Méthodes de prévisions en finance, A. Charles, O. Darné et L. Ferrara (Eds.), 2020-09, pp. 53-68, 2020
Generating univariate fractional integration within a large VAR(1)Journal articleGuillaume Chevillon, Alain Hecq et Sébastien Laurent, Journal of Econometrics, Volume 204, Issue 1, pp. 54-65, 2018

This paper shows that a large dimensional vector autoregressive model (VAR) of finite order can generate fractional integration in the marginalized univariate series. We derive high-level assumptions under which the final equation representation of a VAR(1) leads to univariate fractional white noises and verify the validity of these assumptions for two specific models.

Asymptotics of Cholesky GARCH models and time-varying conditional betasJournal articleSerge Darolles, Christian Francq et Sébastien Laurent, Journal of Econometrics, Volume 204, Issue 2, pp. 223-247, 2018

This paper proposes a new model with time-varying slope coefficients. Our model, called CHAR, is a Cholesky-GARCH model, based on the Cholesky decomposition of the conditional variance matrix introduced by Pourahmadi (1999) in the context of longitudinal data. We derive stationarity and invertibility conditions and prove consistency and asymptotic normality of the Full and equation-by-equation QML estimators of this model. We then show that this class of models is useful to estimate conditional betas and compare it to the approach proposed by Engle (2016). Finally, we use real data in a portfolio and risk management exercise. We find that the CHAR model outperforms a model with constant betas as well as the dynamic conditional beta model of Engle (2016).

Positive semidefinite integrated covariance estimation, factorizations and asynchronicityJournal articleKris Boudt, Sébastien Laurent, Asger Lunde, Rogier Quaedvlieg et Orimar Sauri, Journal of Econometrics, Volume 196, Issue 2, pp. 347-367, 2017

An estimator of the ex-post covariation of log-prices under asynchronicity and microstructure noise is proposed. It uses the Cholesky factorization of the covariance matrix in order to exploit the heterogeneity in trading intensities to estimate the different parameters sequentially with as many observations as possible. The estimator is positive semidefinite by construction. We derive asymptotic results and confirm their good finite sample properties by means of a Monte Carlo simulation. In the application we forecast portfolio Value-at-Risk and sector risk exposures for a portfolio of 52 stocks. We find that the dynamic models utilizing the proposed high-frequency estimator provide statistically and economically superior forecasts.

Weak Diffusion Limits of Dynamic Conditional Correlation ModelsJournal articleChristian M. Hafner, Sébastien Laurent et Francesco Violante, Econometric Theory, Volume 33, Issue 03, pp. 691-716, 2017

The properties of dynamic conditional correlation (DCC) models, introduced more than a decade ago, are still not entirely known. This paper fills one of the gaps by deriving weak diffusion limits of a modified version of the classical DCC model. The limiting system of stochastic differential equations is characterized by a diffusion matrix of reduced rank. The degeneracy is due to perfect collinearity between the innovations of the volatility and correlation dynamics. For the special case of constant conditional correlations, a nondegenerate diffusion limit can be obtained. Alternative sets of conditions are considered for the rate of convergence of the parameters, obtaining time-varying but deterministic variances and/or correlations. A Monte Carlo experiment confirms that the often used quasi-approximate maximum likelihood (QAML) method to estimate the diffusion parameters is inconsistent for any fixed frequency, but that it may provide reasonable approximations for sufficiently large frequencies and sample sizes.

Risk Measure InferenceJournal articleChristophe Hurlin, Sébastien Laurent, Rogier Quaedvlieg et Stephan Smeekes, Journal of Business & Economic Statistics, Volume 35, Issue 4, pp. 499-512, 2017

We propose a bootstrap-based test of the null hypothesis of equality of two firms’ conditional risk measures (RMs) at a single point in time. The test can be applied to a wide class of conditional risk measures issued from parametric or semiparametric models. Our iterative testing procedure produces a grouped ranking of the RMs, which has direct application for systemic risk analysis. Firms within a group are statistically indistinguishable from each other, but significantly more risky than the firms belonging to lower ranked groups. A Monte Carlo simulation demonstrates that our test has good size and power properties. We apply the procedure to a sample of 94 U.S. financial institutions using ΔCoVaR, MES, and %SRISK. We find that for some periods and RMs, we cannot statistically distinguish the 40 most risky firms due to estimation uncertainty.

Testing for jumps in conditionally Gaussian ARMA-GARCH models, a robust approachJournal articleSébastien Laurent, Christelle Lecourt et Franz C. Palm, Computational Statistics & Data Analysis, Volume 100, Issue C, pp. 383-400, 2016

Financial asset prices occasionally exhibit large changes. To deal with their occurrence, observed return series are assumed to consist of a conditionally Gaussian ARMA-GARCH type model contaminated by an additive jump component. In this framework, a new test for additive jumps is proposed. The test is based on standardized returns, where the first two conditional moments of the non-contaminated observations are estimated in a robust way. Simulation results indicate that the test has very good finite sample properties, i.e. correct size and high proportion of correct jump detection. The test is applied to daily returns and detects less than 1% of jumps for three exchange rates and between 1% and 3% of jumps for about 50 large capitalization stock returns from the NYSE. Once jumps have been filtered out, all series are found to be conditionally Gaussian. It is also found that simple GARCH-type models estimated using filtered returns deliver more accurate out-of sample forecasts of the conditional variance than GARCH and Generalized Autoregressive Score (GAS) models estimated from raw data.

On the Univariate Representation of BEKK Models with Common FactorsJournal articleAlain Hecq, Franz C. Palm et Sébastien Laurent, Journal of Time Series Econometrics, Volume 8, Issue 2, pp. 91-113, 2016

Simple low order multivariate GARCH models imply marginal processes with a lot of persistence in the form of high order lags. This is not what we find in many situations however, where parsimonious univariate GARCH(1,1) models for instance describe quite well the conditional volatility of some asset returns. In order to explain this paradox, we show that in the presence of common GARCH factors, parsimonious univariate representations can result from large multivariate models generating the conditional variances and conditional covariances/correlations. The diagonal model without any contagion effects in conditional volatilities gives rise to similar conclusions though. Consequently, after having extracted a block of assets representing some form of parsimony, remains the task of determining if we have a set of independent assets or instead a highly dependent system generated with a few factors. To investigate this issue, we first evaluate a reduced rank regressions approach for squared returns that we extend to cross-returns. Second we investigate a likelihood ratio approach, where under the null the matrix parameters have a reduced rank structure. It emerged that the latter approach has quite good properties enabling us to discriminate between a system with seemingly unrelated assets (e.g. a diagonal model) and a model with few common sources of volatility.