Aller au contenu principal

Sullivan Hué

Chercheur Aix-Marseille UniversitéFaculté d'économie et de gestion (FEG)

Économétrie, finance et méthodes mathématiques
Hué
Statut
Maître de conférences
Domaine(s) de recherche
Économétrie, Finance
Thèse
2020, Laboratoire d'Economie d'Orléans
Téléchargement
CV
Adresse

Maison de l'économie et de la gestion d'Aix
424 chemin du viaduc, CS80429
13097 Aix-en-Provence Cedex 2

Résumé Despite their high predictive performance, random forest and gradient boosting are often considered as black boxes which has raised concerns from practitioners and regulators. As an alternative, we suggest using partial linear models that are inherently interpretable. Specifically, we propose to combine parametric and non‐parametric functions to accurately capture linearities and non‐linearities prevailing between dependent and explanatory variables, and a variable selection procedure to control for overfitting issues. Estimation relies on a two‐step procedure building upon the double residual method. We illustrate the predictive performance and interpretability of our approach on a regression problem.
Mots clés Machine leaning, Lasso, Autometrics, GAM