Aller au contenu principal
Lieu
Îlot Bernard du Bois - Salle 21

AMU - AMSE
5-9 boulevard Maurice Bourdet
13001 Marseille

Date(s)
Mardi 1 juin 2021
14:00 à 15:30
Contact(s)

Michel Lubrano : michel.lubrano[at]univ-amu.fr
Pierre Michel : pierre.michel[at]univ-amu.fr

Résumé

Financial institutions increasingly rely on predictive machine learning models to detect fraudulent transactions. Two main challenges when building a supervised tool for fraud detection are the imbalance or skewness of the data and the various costs for different types of misclassification. We discuss techniques to solve the imbalance issue and present a cost-sensitive logistic regression algorithm.