Skip to main content

Anthony Strittmatter

CREST
Optimal targeting in fundraising: A causal machine-learning approach
Joint with Tobias Cagala
Online
Venue
Îlot Bernard du Bois - Salle 21

AMU - AMSE
5-9 boulevard Maurice Bourdet
13001 Marseille

Date(s)
Tuesday, March 29 2022
2:00pm to 3:30pm
Contact(s)

Michel Lubrano: michel.lubrano[at]univ-amu.fr
Pierre Michel: pierre.michel[at]univ-amu.fr

More information
Abstract

Ineffective fundraising lowers the resources charities can use to provide goods. We combine a field experiment and a causal machine-learning approach to increase a charity’s fundraising effectiveness. The approach optimally targets a fundraising instrument to individuals whose expected donations exceed solicitation costs. Our results demonstrate that machine-learning-based optimal targeting allows the charity to substantially increase donations net of fundraising costs relative to uniform benchmarks in which either everybody or no one receives the gift. To that end, it (a) should direct its fundraising efforts to a subset of past donors and (b) never address individuals who were previously asked but never donated. Further, we show that the benefits of machine-learning-based optimal targeting even materialize when the charity only exploits publicly available geospatial information or applies the estimated optimal targeting rule to later fundraising campaigns conducted in similar samples. We conclude that charities not engaging in optimal targeting waste significant resources.